PRESENTATION

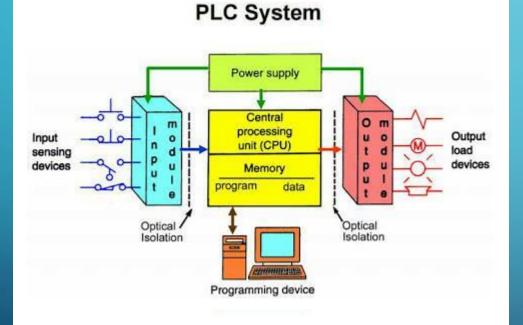
On

Subject

PLC & Microcontroller

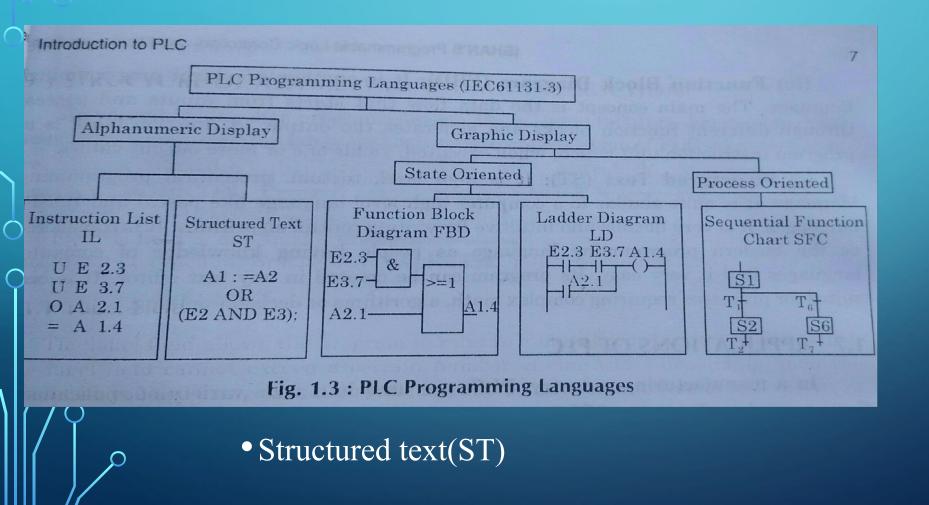
(Electrical Engg 6th Semester)

INTRODUCTION OF PLC

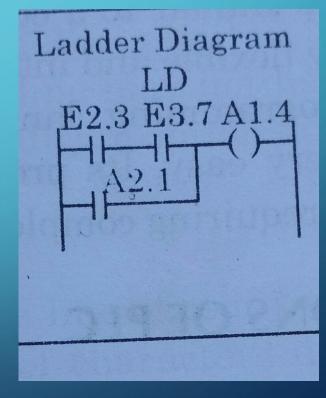

- Programmable logic controller
- It is a digital electronic device
- It can be programmable
- It perform all logical function and control the machine
- It increases technology and confort It can make a industry fully automated
- It saves time also

ADVANTAGES OF PLC OVER CONVENTIONAL RELAY

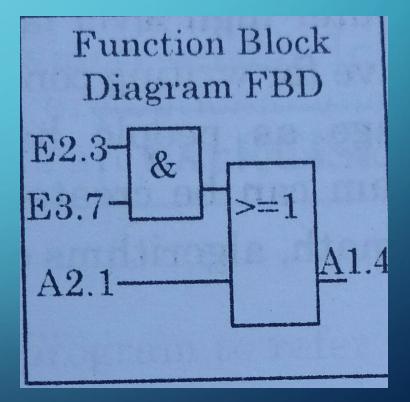
- PLCs does not have tear and wear
- It require less space
- It has a software it store a programm
- It has less weight for large machines
- It control more input and output
- It's maintenance cost is less
- Because it is programmable so one PLC can control other machines
- Noise less operation
- Less power consumption


BLOCK DIAGRAM OF PLC

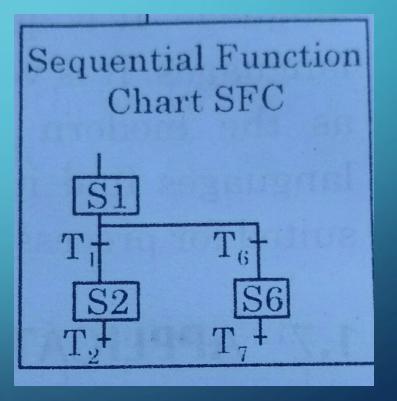
• PLC consists :


- Microprocessor : CPU ,memory and communication port
- Input&Output module
- Power supply
- Programmable device(PC)

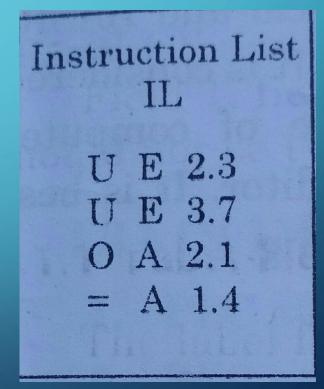
BLOCK DIAGRAM OF PLC LANGUAGES


LADDER DIAGRAM

- It is a graphical language
- It is based on relay logic
- It is easy to understand
- It is a low level language


FUNCTION BLOCK DIAGRAM

- It is a graphical language also
- It has a main concept of data flow from input to output through the function block
- It has a function block which is carried out by machines


SEQUENTIAL FUNCTION CHART

- It is a high level language
- Less easy to understand
- It is a chart of function in sequence which is perform by machines
- It is as a algorithm Use for complex control circuit

INSTRUCTION LIST

It is a alphanumeric language
It is a list of instructions
It requires less memory area
Execution rate is very fast
Difficult to understand

STRUCTURED TEXT

• It is also a alphanumeric language

- Difficult to understand
- Used in complex operation
- High level language
 - Used in dicision making

Structured Text ST A1 := A2OR (E2 AND E3);

MANUFACTURER OF PLC

• ALLEN BRADLEY

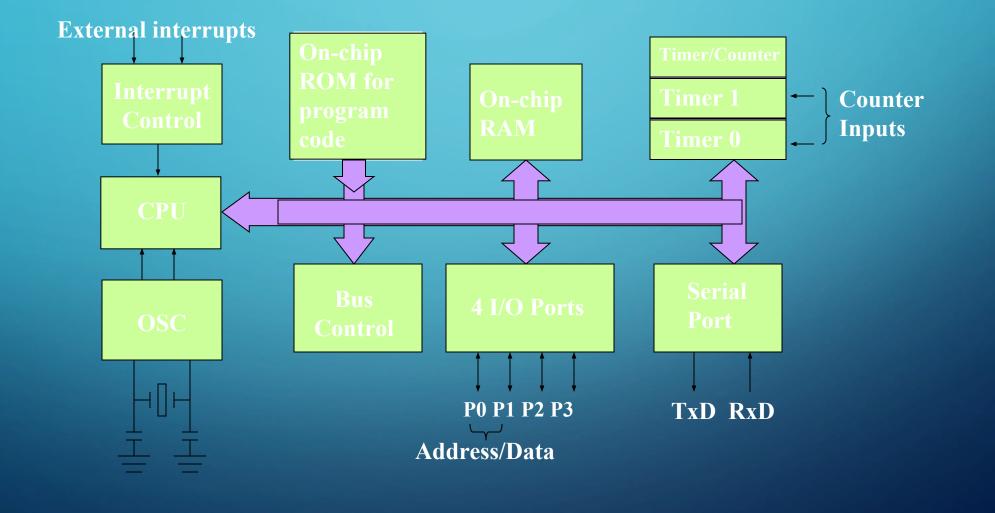
- SIEMENS
- TEXAS
- ABB
- MODICON
- But Allen Bradley & Siemens are mostly used in INDIA

Microcontroller :

- A smaller computer
- On-chip RAM, ROM, I/O ports...
- Example: Motorola's 6811, Intel's 8051, Zilog's Z8 and PIC 16X

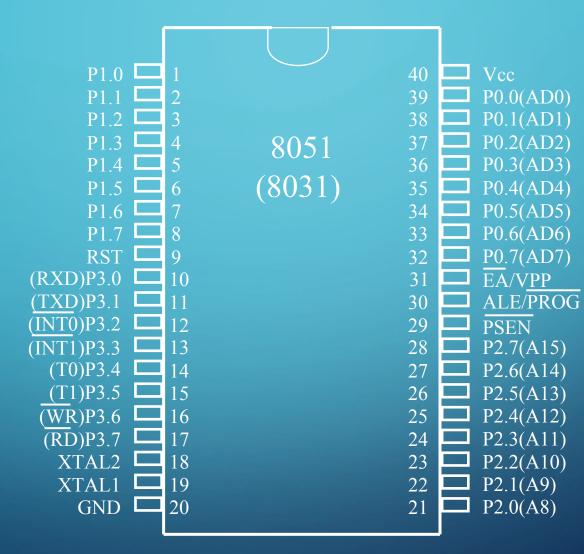
Microprocessor vs. Microcontroller

Microprocessor


- CPU is stand-alone, RAM, ROM, I/O, timer are separate
- designer can decide on the amount of ROM, RAM and I/O ports.
- expansive
- versatility
- general-purpose

Microcontroller

- CPU, RAM, ROM, I/O and timer are all on a single chip
- fix amount of on-chip ROM, RAM, I/O ports
 - for applications in which cost, power and space are critical
- single-purpose



BLOCK DIAGRAM

Pin Description of the 8051

 \bigcap

 \boxtimes

FUNCTION OF PINS

- Vcc (Pin 40) for supply voltage to chip.
- Vss (Pin 20) to ground.
- XTAL 1 and XTAL 2
- RST Reset (Active high)
- EA External Access pin (Active low)
- PSEN Program Store Enable output pin (Active low)
- ALE Address Latch Enable Pin (Active high)

PORT PINS

- Port 0 (P0) Pins 32 to 39, 8-bit open drain bidirectional i/o port.
- Port 1(P1) Pins 1 to 8 are port 1 pins ,8-bit bidirectional i/o port with internal pull ups
- Port 2 (P2) Pins 21 to 28 are port 2 pins. Carry high order address signal A8 to A15.
- Port 3 (P3) Pins 10 to 17 are port 3 pins. It also carry some special signals like RXD, TXD, WR,etc.

Registers in Microcontroller

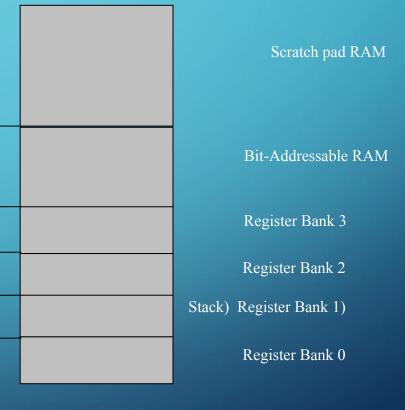
B R0 R1
R1
R2
R3
R4
R5
R6
R7

DPT

PC

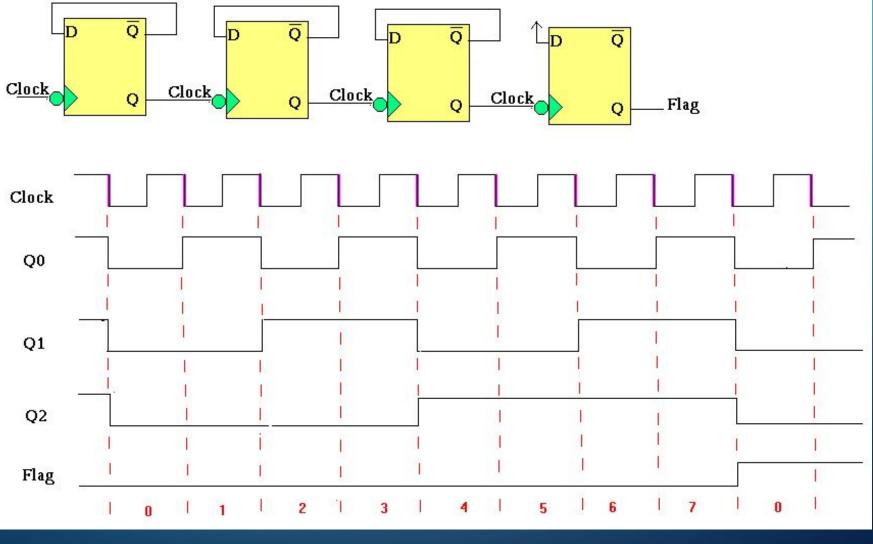
DPH		DPL	
	PC		

Some 8051 16-bit Register


Some 8-bitt Registers of the 8051

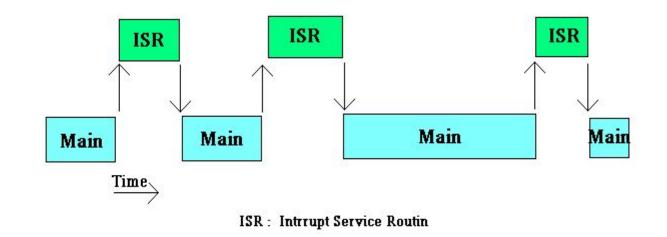
STACK IN THE 8051

• The register used to access the stack is called **SP** (stack pointer) register.


7FH

The stack pointer in the 8051 is only 8 bits wide, which means that it can take value 00 to FFH.
When 8051 powered up. 07H 00H value 07.

Timer:



Program execution without intrrupts :

Program execution with intrrupts :

Numerical Bases Used in Programming

Hexadecimal

Binary

BCD

 \bigcirc

Hexadecimal Digits:

1 2 3 4 5 6 7 8 9 A B C D E F

A=10 B=11 C=12 D=13 E=14 F=15

Decimal, Binary, BCD, & Hexadecimal Numbers

 $(43)_{10} =$

 $(0100\ 0011)_{BCD} =$

 $(0010 1011)_2 =$ (2 B)₁₆

Register Addressing Mode

MOV Rn, A ;n=0,...,7 ADD A, Rn MOV DPL, R6

MOV DPTK, A MOV Km, Rn

Direct Addressing Mode

Although the entire of 128 bytes of RAM can be accessed using direct addressing mode, it is most often used to access RAM loc. 30 - 7FH.

MOV R0, 40H MOV 56H, A MOV A, 4 ; \equiv MOV A, R4 MOV 6, 2 ; copy R2 to R6 ; MOV R6,R2 is invalid ! **Immediate Addressing Mode**

MOV A,#65H

MOV R6,#65H

MOV DPTR,#2343H

MOV P1,#65H

 \bigcirc

SETB	С	; CY=1
SETB	P0.0	;bit 0 from port $0 = 1$
SETB	P3.7	;bit 7 from port $3 = 1$
SETB	ACC.2	;bit 2 from ACCUMULATOR =1
SETB	05	;set high D5 of RAM loc. 20h

Note:

CLR instruction is as same as SETB i.e.:

CLR C ;CY=0

But following instruction is only for CLR: CLR A ;A=0

DECbyte;byte=byte-1INCbyte;byte=byte+1

INC R7 DEC A DEC 40H ; [40]=[40]-1

 \bigcirc

 \bigcap

LOOP and JUMP Instructions

Conditional Jumps :

JZ	Jump if A=0
JNZ	Jump if A/=0
DJNZ	Decrement and jump if A/=0
CJNE A,byte	Jump if A/=byte
CJNE reg,#data	Jump if byte/=#data
JC	Jump if CY=1
JNC	Jump if CY=0
JB	Jump if bit=1
JNB	Jump if bit=0
JBC	Jump if bit=1 and clear bit

Call instruction

SETB P0.0

•

CALL UP

- •
- .

UP:CLR P0.0

- - . RET

