G.P. Dhangar

Fluid Mechanics

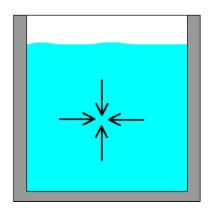
By
Er. Vijaypal
Deptt. Of Civil Engg.

Pressure

Pressure is the (compression) force exerted by a fluid per unit area.

$$Pressure = \frac{Force}{Area} \quad \left(\frac{N}{m^2}\right) \equiv Pa$$

- Stress vs. pressure?
- In fluids, gases and liquids, we speak of pressure; in solids this is normal stress. For a fluid at rest, the pressure at a given point is the same in all directions.



• Differences or gradients in pressure drive a fluid flow, especially in ducts and pipes.

Density

The density of a fluid is its mass per unit volume:

$$\rho = \frac{m}{V} \left(\frac{kg}{m^2} \right)$$

- Liquids are essentially incompressible
- Density is highly variable in gases nearly proportional to the pressure.

@20°C, 1 atm	Air	Water	Hydrogen	Mercury
Density (kg/m³)	1.20	998	0.0838	13,580

• **Note**: *specific volume* is defined as:

$$v = \frac{V(m^3)}{m(kg)} = \frac{1}{\rho}$$

Specific weight

• The specific weight of a fluid is its weight, , per unit volume. Density and specific weight are related by gravity:

$$\gamma = \rho g \left(\frac{N}{m^3}\right)$$

Specific gravity

Specific gravity is the ratio of a fluid density to a standard reference fluid, typically water at 4°C (for liquids) and air (for gases):

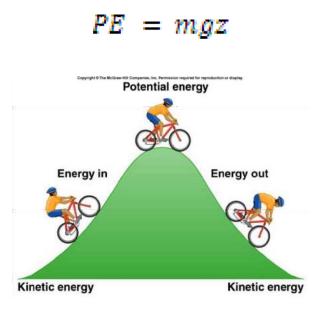
$$SG_{gas} = \frac{\rho_{gas}}{\rho_{air}} = \frac{\rho_{gas}}{1.205 (kg/m^3)}$$

$$SG_{liquid} = \frac{\rho_{liquid}}{\rho_{water}} = \frac{\rho_{liquid}}{1000 (kg/m^3)}$$

• For example, the specific gravity of mercury is SG_{Hg} = 13,580/1000 $\sqrt[5]{13.6}$.

Kinetic and potential energy

• <u>Potential energy</u> is the work required to move the system of mass *m* from the origin to a position against a gravity field *g*:



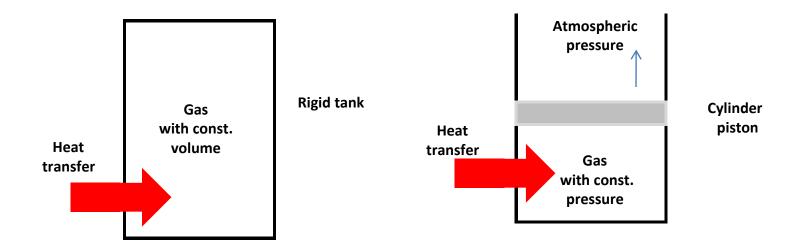
 <u>Kinetic energy</u> is the work required to change the speed of the mass from zero to velocity V.

$$KE = \frac{1}{2}mV^2$$

<u>Note</u>: internal energy, *u*, is a function of temperature and pressure for the single-phase substance, whereas KE and PE are kinematic quantitie

Specific heat

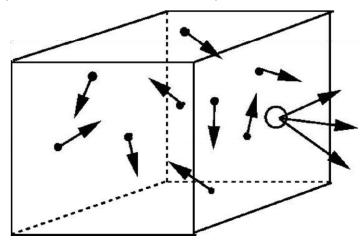
- <u>Specific heat capacity</u>: is the measure of the heat energy required to increase the temperature of a unit mass of a substance by one degree temperature.
- $c_{aluminum}$ =0.9 (kJ/kg.K) and c_{water} = 4.186 (kJ/kg.K)
- There are two types of specific heats, constant volume c_v and constant pressure c_p .



cv cpldeal gas equation of state

- Any equation that relates the pressure, temperature, and specific volume of a substance is called an equation of state.
- It is experimentally observed that at a low pressure the volume of a gas is

proportional to its temperature:



$$p = \rho RTp = R_u \rho T$$

 R_u is the gas universal constant, R_u = 8.314 (kJ/kmol.K)

The constant R is different for each gas; for air, $R_{air} = 0.287$ (kJ/kg.K). The molecular weight of air M = 28.97 kg/kmol.

Properties of ideal gas

• For an ideal gas, *internal energy* is only a function of temperature; thus constant volume specific heat is only a function of temperature:

$$c_v = \left(\frac{\partial u}{\partial T}\right)\Big|_v = \frac{du}{dT} = c_v(T)$$
$$du = c_v(T)dT$$

• For an ideal gas, enthalpy is only a function of temperature; h= u + pv• The constant pressure specific heat can be defined as:

$$c_p = \left(\frac{\partial h}{\partial T}\right)\Big|_p = \frac{dh}{dT} = c_p(T)$$
$$dh = c_p(T)dT$$
$$R = c_p - c_p$$

• The specific heat ratio is an important dimensionless parameter:

$$k = \frac{c_p}{c_n} = k(T) \ge 1$$

Incompressible fluids

• Liquids are (almost) incompressible and thus have a single constant specific heat:

$$c_v = c_v = c$$
 $dh = cdT$

Viscosity

• Viscosity is a measure of a fluid's resistance to flow. It determines the fluid strain rate that is generated by a given applied shear stress.

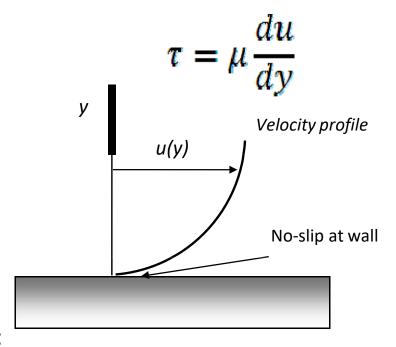
Temperature has a strong and pressure has a moderate effect on viscosity.
 The viscosity of gases and most liquids increases slowly with pressure.

$$\mu_{hydrogen} = 9.0E - 6 \left(\frac{kg}{m.s}\right) \qquad \mu_{air} = 1.8E - 5 \left(\frac{kg}{m.s}\right)$$

$$\mu_{water} = 1.0E - 3 \left(\frac{kg}{m.s}\right) \quad \mu_{engine \, o \, il, SAE30} = 0.20 \left(\frac{kg}{m.s}\right)$$

Viscosity

A <u>Newtonian fluid</u> has a linear relationship between shear stress and



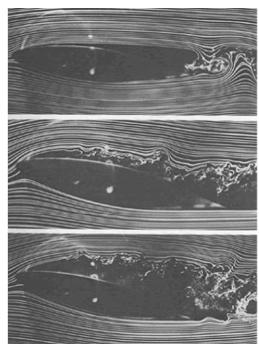
velocity gradient:

- The *no-slip condition*: at the wall velocity is zero relative to the wall. This is a characteristic of all viscous fluid.
- The shear stress is proportional to the slope of the velocity profile and is greatest at the wall.

The Reynolds number

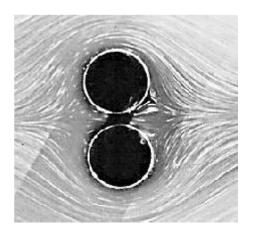
• The Reynolds number, Re, is a dimensionless number that gives a measure of

$$Re = \frac{\rho VL}{\mu} = \frac{VL}{\nu}$$



the ratio of inertial forces

to viscous forces



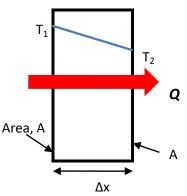
Creeping flow, Re is very low

Laminar flow, Re moderate Turbulent flow, Re high

Thermal conductivity

 Rate of heat conduction is proportional to the temperature difference, but it is inversely proportional to the thickness of the layer

Rate of heat transfer $\propto \frac{(surfacs area)(temperature difference)}{wall thickness}$

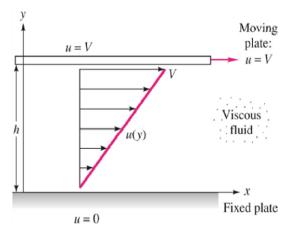


- To make this equality, k (W/m.K)the thermal conductivity of the material, is introduced.
- This is called the Fourier's law of heat conduction:

$$\begin{split} q &= \frac{Q}{A} = -k \nabla T \\ q_x &= -k \frac{\partial T}{\partial x}, \qquad q_y = -k \frac{\partial T}{\partial y}, \qquad q_z = -k \frac{\partial T}{\partial z} \end{split}$$

Flow between parallel plates

 It is the flow induced between a fixed lower plate and upper plate moving steadily at velocity V



• Shear stress is constant throughout the fluid:

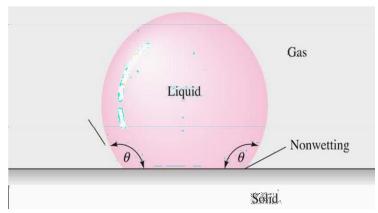
$$\frac{du}{dy} = \frac{\tau}{\mu} = const$$

After integration and applying boundary conditions:

$u = v \frac{y}{h} Surface$

tension

 A liquid, being unable to expand freely, will form an interface with a second liquid or gas.



• The cohesive forces between liquid molecules are responsible for the phenomenon known as surface tension.

- Surface tension Y (pronounced upsilon) has the dimension of force per unit length (N/m) or of energy per unit area (J/m^2) .
- $Y_{air-water} = 0.073 \text{ N/m}$; $Y_{air-mercury} = 0.48 \text{ N/m}$

Surface tension



• Using a force balance, pressure increase in the interior of a liquid half cylinder droplet of length L and radius R is:

$$2RL\Delta p = 2\Upsilon L \quad or \quad \Delta p = \frac{\Upsilon}{R}$$

• Contact angle θ appears when a liquid interface intersects with a solid surface.

$$\theta = \begin{cases} < 90^{\circ} & wetting \ liquid \\ > 90^{\circ} & nonwetting \ liquid \end{cases}$$

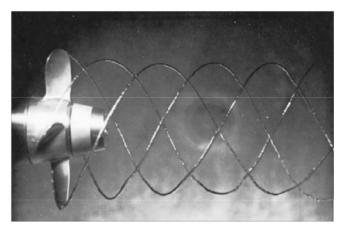
• Water is extremely wetting to a clean glass surface with $\theta \approx 0$. For a clean mercury-air-glass interface, $\theta \approx 130^\circ$.

Vapor pressure and cavitation

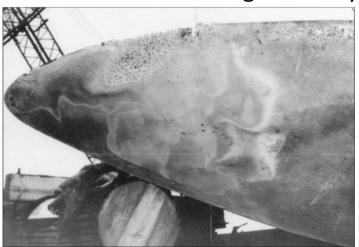
- Vapor pressure: the pressure at which a liquid boils and is in equilibrium with its own vapor.
- When the liquid pressure is dropped below the vapor pressure due to a flow phenomenon, we call the process cavitation.

 The dimensionless parameter describing flow-induced boiling is called cavitation number:

$$Ca = \frac{p_a - p_v}{0.5\rho V^2}$$



• Bubble formation due to high velocity (flow-induced boiling).

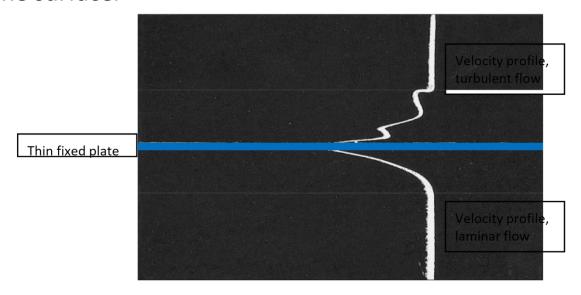


• Damage (erosion) due to cavitation on a marine propeller.

No-slip and no-temp jump

• When a fluid flow is bounded by a surface, molecular interactions cause the fluid in contact with the surface to seek momentum and energy equilibrium

with the surface.



$$V_{fluid} = V_{wall}$$
 No-slip flow condition

$$T_{fluid} = T_{wall}$$

 $T_{fluid} = T_{wall}$ No-temperature jump condition

Speed of sound & compressibility

the compressibility effects are important at high gas flows due to significant

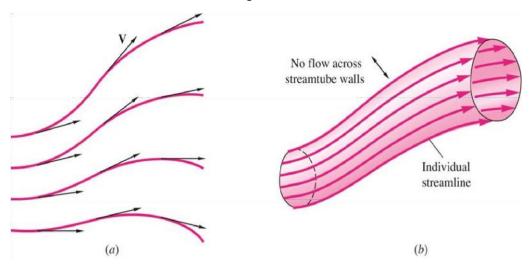
density changes.

• Speed of sound: is the rate of propagation of small disturbance pressure pulses (sound waves) through the fluid:

$$\alpha^2 = k \left(\frac{\partial p}{\partial \rho} \right)_T$$
, $k = \frac{c_p}{c_v}$

- For an ideal gas atdeal gas √kRT
- Mach number is the ratio of the flow to the speed of sound $M\alpha = \frac{V}{a}$
- Compressibility effects are normally neglected for Ma<0.3

Flow pattern



- <u>Streamline</u>: is a line everywhere tangent to the velocity vector at a given instant.
- <u>Pathline</u>: is the actual path traversed by a given fluid particle.
- Note: in steady flows, streamlines and pathlines are identical.

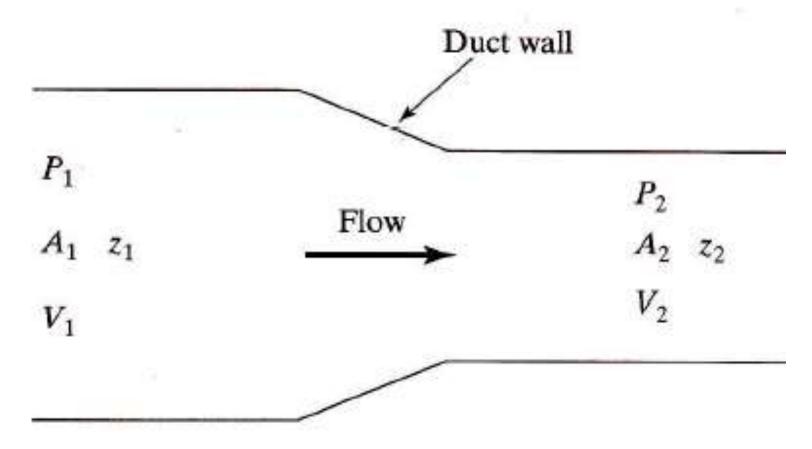
• If the elemental arc length *dr*of a streamline is to be parallel to *V*, their respective components must be in proportion:

$$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} = \frac{dr}{V}$$

Bernoulli equation takes the form of

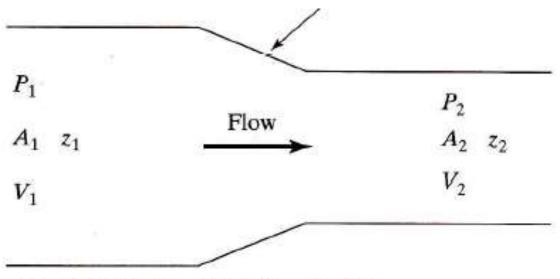
$$\frac{V_1^2}{2} + \frac{P_1}{\rho} + gz_1 = \frac{V_2^2}{2} + \frac{P_2}{\rho} + gz_2$$

where V is the fluid velocity, P is the fluid pressure, z is the elevation of the location in the pipe relative to a specified reference elevation (datum), ρ is the fluid density, and g is gravity



The velocities at two axial locations in the duct with different areas are related through the conservation of mass equation,

$$\rho_1 V_1 A_1 = \rho_2 V_2 A_2 = \dot{m}$$



where, A is the duct cross-sectional area and \dot{m} is the fluid mass flow rate (e.g., kg/s).

For an incompressible fluid, the density is constant.

conservation of mass equation

$$\rho_1 V_1 A_1 = \rho_2 V_2 A_2 = \dot{m} \qquad \frac{V_1^2}{2} + \frac{P_1}{\rho} + g z_1 = \frac{V_2^2}{2} + \frac{P_2}{\rho} + g z_2$$

is usually written in the form:

$$V_1A_1 = V_2A_2 = Q$$
 where Q is the volume flow rate (e.g., m³/s).

Equations can be combined to obtain an expression

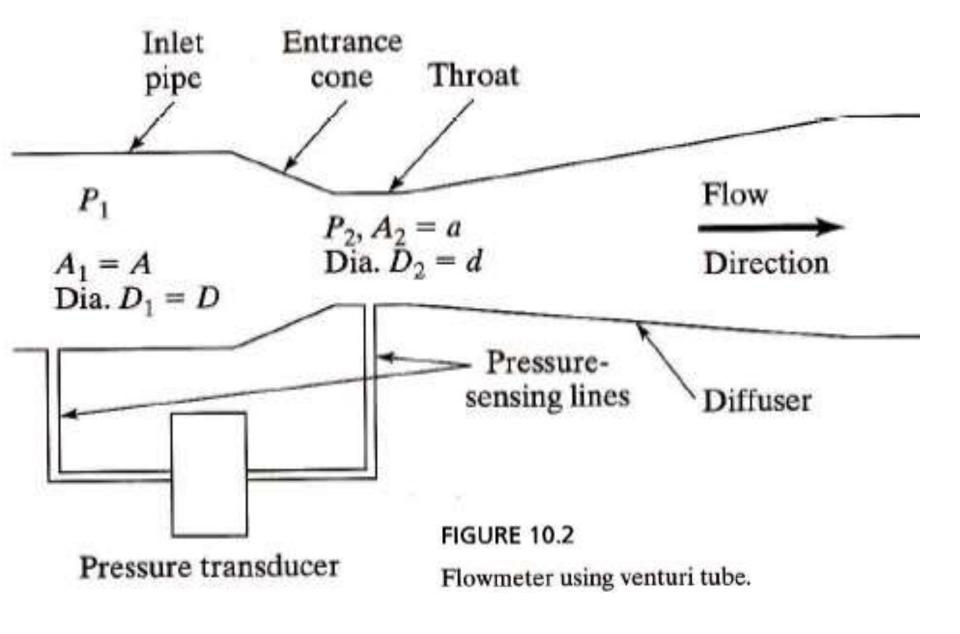
$$V_2 = \frac{1}{\sqrt{1 - (A_2/A_1)^2}} \sqrt{\frac{2[(P_1 + g\rho z_1) - (P_2 + g\rho z_2)]}{\rho}}$$

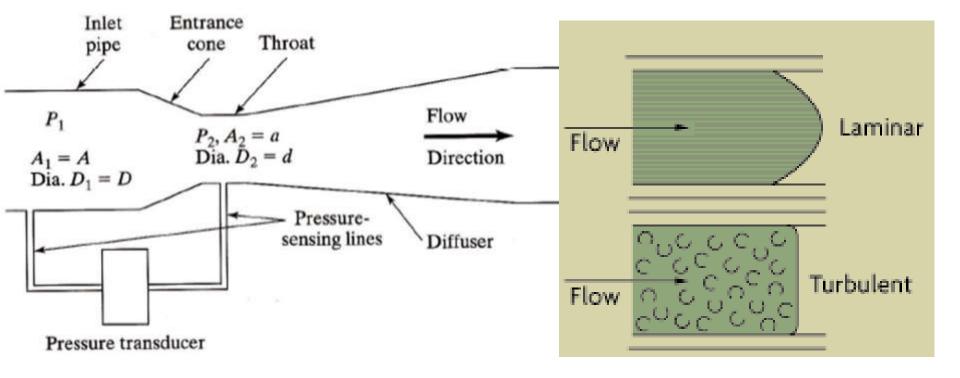
$$V_2 = \frac{1}{\sqrt{1 - (A_2/A_1)^2}} \sqrt{\frac{2[(P_1 + g\rho z_1) - (P_2 + g\rho z_2)]}{\rho}}$$

$$V_1 A_1 = V_2 A_2 = Q$$

$$Q = \frac{A_2}{\sqrt{1 - (A_2/A_1)^2}} \sqrt{\frac{2[(P_1 + g\rho z_1) - (P_2 + g\rho z_2)]}{\rho}}$$

The <u>theoretical</u> basis for a class of flow meters in which the flow rate is determined from the pressure change caused by variation in the area of a conduit.





$$Q = \frac{CA_2}{\sqrt{1 - (A_2/A_1)^2}} \sqrt{\frac{2[(P_1 + g\rho z_1) - (P_2 + g\rho z_2)]}{\rho}}$$

The factor C, called the discharge coefficient.

is used to account for nonideal effects.

and a parameter called the Reynolds number, which is defined as

$$Re = \frac{\rho VD}{\mu}$$

$$Q = \frac{CA_2}{\sqrt{1 - (A_2/A_1)^2}} \sqrt{\frac{2[(P_1 + g\rho z_1) - (P_2 + g\rho z_2)]}{\rho}}$$

$$K = \frac{C}{\sqrt{1 - (A_2/A_1)^2}}$$

K, called the flow coefficient,

When $Z_1 = Z_2$ Flow Rate Equation becomes as follows:

$$Q = \frac{CA_2}{\sqrt{1 - (A_2/A_1)^2}} \sqrt{\frac{2\Delta P}{\rho}}$$