Govt. Polytechnic, Dhangar

Electrical Engineering Department

Lesson plan

Name of	Faculty		RISHI PAY	AL			
Disciplin	Discipline			Electrical Engineering			
Semester	Semester				3rd		
Subject			Electronics	-II			
Work lo	ad (Theo	ry + Practical) Per Week	[03 + 02]				
Week	Day	Theory Topic/ Assignment/ Tes	st	No.	Practical		
	1	Unit:1 Transistor Audio Power Amplifi	er		To study the effect of coupling		
	2	Difference between voltage and power		1	capacitor on lower cut off		
ıst		amplifier			frequency and upper cut off		
	3	Terms in Power Amplifier, collector eff	iciency,		frequency by plotting frequency		
		distortion and dissipation capability			response curve of a two stage RC		
	1	Classification of power amplifier class A	A, B and		coupled amplifier		
2 nd		С					
		Class A single-ended power amplifier	, its				
	2	working and collector efficiency Imped	ance	2	To measure (a) optimum load (b)		
		matching in a power amplifier	using		output power (c) signal handling		
		transformer			capacity of a push-pull amplifier		
	3	Heat sinks in power amplifiers, Push-pu	ıll				
		amplifier: circuit details working and					
		advantages					
	1	Principles of the working of complemen	tary		To measure (a) voltage gain (b)		
3rd		symmetry push-pull amplifier		3	input and output impedance for		
	2	Revision/Assignment of 1st unit			an emitter follower circuit		
1		1		I	I		

	3	Class test of 1 st unit		
	1	Unit-2 Introduction to tuned voltage amplifier		
4th	2	Series and parallel resonance, Single and double tuned voltage amplifiers	4	Practical Quiz No.2/ Revision and file checking
	3	Frequency response of tuned voltage amplifiers, Applications of tuned voltage amplifiers		
	1	Revision/Assignment of 2 nd unit		To measure frequency generation
5th	2	Class test of 2 nd unit	5	in (a) Hartley (b) R-C Phase Shift
	3	Unit3: Feedback in Amplifiers positive and negative feedback and their need		oscillator
	1	Voltage gain of an amplifier with negative $\label{eq:continuous} \mbox{feedback } A = A/1 + A$	6	Practical Quiz No.3/ Revision and
6th	2	Effect of negative feedback on voltage gain, stability, distortion, band width		file checking
	3	Output and input impedance of an amplifier		
	1	Typical feedback circuits	7	To observe the differentiated and
7 th	2	Effect of removing the emitter by-pass capacitor on a CE transistor amplifier		integrated square wave on a CRO for different values of R-C time
	3	Emitter follower and its applications		constant
	1	Revision/Assignment of 3 rd unit		
8th	2	Unit4: Sinusoidal oscillators amplifier positive		Clipping of both portion of sine-

		feedback		wave using: diode and dc source/
		recupack		wave using, thouc and the source/
			_	
	3	Difference between an oscillator and an	8	Zener diodes
		alternator		
	1	Essentials of an oscillator, Circuit details and		
		working of LC oscillators	9	Clamping a sine-wave to: Negative
9th	2	Tuned Collector, Hartley		dc voltage Positive dc voltage
	3	and Colpitt's oscillators, R-C oscillator circuits		
	1	phase shift and Wein bridge oscillator circuits		Practical Quiz No.3/ Revision and
10 th	2	Introduction to piezoelectric crystal and crystal	10	file checking
10			10	The Checking
		oscillator circuit		
	3	Revision/Assignment of 4th unit		
	1	Wave-Shaping and Switching Circuits		To generate square-wave using an
11th	2	Concept of Wave-shaping circuits	11	astable multivibrator and to
	3	R-C differentiating and integrating circuits		observe the wave form on a CRO
		K-C unterentiating and integrating circuits		observe the wave for in on a CRO
	1	Diode clipping circuits, Diode clamping circuits		To observe triggering and working
₁₂ th	2	Applications of wave-shaping circuits,	12	of a bistable multivibrator circuit
		Transistor as a switch		and observe its output wave form
	3	Collector coupled astable, monostable, Bistable		on a CRO
		multivibrator circuits		
	1	Working and applications of transistor inverter		
	1		12	Dunatical Onio No 2/ Daniel or and
1 oth		circuit using power transistors	13	Practical Quiz No.3/ Revision and
13 th				file checking

	2	Revision/Assignment of 5th unit		
	3	Unit6: Working Principles of different types of		
		power supplies viz. CVTs		
	1	IC voltage regulators(78xx,79xx)		Op-Amp (IC 741) as inverting and
14	2	Revision/Assignment of 6th unit	14	non-inverting amplifier, adder
	3	Unit7: Operational Amplifier, differential		Comparator, integrator and differ
		amplifier		-entiator verify using p-spice
	1	Emitter coupled differential amplifier Offset		To study the pin configuration and
15 th		even voltages and currents	15	working of IC 555 and its use as
	2	Integrator and differentiator, Summer,		mono stable and astable multi -
		Subtractor		vibrator
	3	Familiarization with specifications and pin		
		configuration of IC 741		
	1	Block diagram and operation of 555 IC timer		Internal Practical/viva-voice
16 th	2	HSBTE old paper solution	16	evaluation
	3	HSBTE old paper solution		

LESSON PLAN

Name of the faculty : Mr. Mannu Lal H.O.D in Electrical Engg.

Discipline : Electrical Engg.

Semester : 3rd

Subject : Estimating and Costing in Electrical Engineering

(ECEE)

Lesson Plan Duration : 15 weeks

Work Load : Lectures — 03

	Theory				
Week	Lecture Day	Topic (including assignment/test)			
	1 st	Purpose of estimating and costing, proforma for making estimates.			
1 st	2 nd	Preparation of materials schedule, costing and price list.			
	3 rd	Preparation of tender document (with 2-3 exercises).			
	4 th	Net price list, market survey, overhead charges and labour charges.			
2 nd	5 th	Electrical point method and fixed percentage method.			
	6 th	Contingency, profit, purchase system, enquiries and comparative statements, Orders for supply and payment of bills.			
	7 th	Tenders – its constituents, finalization and specimen tender.			
3 rd	8 th	Wiring Types—Cleat, batten and casing capping.			
	9 th	Conduit wiring and comparison of different wiring systems.			
	10 th	Selection and design of wiring schemes for particular situation (domestic and industrial).			
4 th	11 th	Selection of wires and cables, Wiring accessories.			
	12 th	Use of MCB and ELCB, Use of wire-gauge and tables, assignment submission.			
	13 th	Domestic installations; description of various tests to test the wiring installation before commissioning.			
5 th	14 th	—Continued—description of various tests to test the wiring installation before commissioning.			
	15 th	Standard practice as per IS and IE rules. Planning of circuits, subcircuits.			
	16 th	Position of different accessories.			
6 th	17 th	Sub-circuits and position of different accessories.			
-	18 th	Numerical practice for planning of sub-circuits (including wiring schemes).			

	19 th	Electrical layout of single storey and multi-storey buildings having similar electrical load.
7 th	20 th	Preparing estimates including cost as per schedule rate pattern and actual market rate. (single storey and multi-storey buildings having similar electrical load).
	21 st	Numerical practice and taking doubts related to cost estimation for wiring of single storey and multi-storey buildings.
	22 nd	Industrial installations: relevant IE rules and IS standard practices.
8 th	23 rd	Planning, designing and estimation of installation of single phase motors of different ratings.
	24 th	Electrical circuit diagram and starters, Preparation of list of materials.
	25 th	Estimating and costing exercises on workshop with singe-phase, 3-phase motor load and the light load (3-phase supply system).
9 th	26 th	Numerical practice for estimating cost of wiring for single phase motors of different ratings.
	27 th	Taking doubts related to cost estimation for wiring of single phase and three phase motors of different ratings and assignment submission.
	28 th	Service line connections: Over-head and underground connections from pole to energy meter.
10 th	29 th	—Continued—Service line connections: Over-head and underground connections from pole to energy meter (Types of Service Connections).
	30 th	Service line connections estimate for domestic.
	31 st	Service line connections estimate for industrial.
11 th	32 nd	Estimating the material required for transmission lines (overhead and underground) planning
	33 rd	Estimating the material required for distribution lines (overhead and underground) planning.
	34 th	Designing of lines with different fixtures, Earthing of lines (based on unit cost calculations).
12 th	35 th	Substation: Types of sub-stations, Substation schemes and components.
	36 th	Estimate of 11/0.4 KV pole mounted sub-station up to 200 KVA rating.
	37 th	Methods of earthing of substations.
13 th	38 th	Key Diagram of 66 KV/11KV, 11 KV/0.4 KV sub-stations.
	39 th	Outdoor and indoor sub-stations.

	40 th	Single line diagram and layout sketching of outdoor, indoor 11kV, 33kV sub-station.
14 th	41 st	Taking doubts related to indoor and outdoor sub-stations and checking of note book (Assignment).
	42 nd	Exercise- Preparation of tender documents
	43 rd	Tender – constituents, finalization.
15 th	44 th	Specimen tender.
15	45 th	Taking doubts related to tender documents preparation and checking of note book.

Lesson plan

Name:- Mr. Deepak

Discipline:- Electrical

Semester:- 3rd Subject:- NCSE

Lesson plan duration:- 15 Weeks

Work Load Lecture Per Week (in hours) :- Lectures-04

Week		Theory
	Lecture Day	Topic(including assignment test)
	1st	Introduction, classification of energy(primary and secondary resources)
1.4	2nd	commercial and non commercial energy, characteristics of energy, renewable and non renewable energy sources
1st	3rd	Present scenario, future prospects and economics, criteria of renewable source of energy
	4th	projected energy consumption of india for 2030
	5th	solar energy and it's sources, principal of conversion solar radiations into heat or green house effect
2nd	6th	photo voltaic cell it's working ,V-I characteristics and efficiency
	7th	Generation of electricity, application of solar energy
	8th	revision and class test
	9th	Bio-energy biomass
2md	10th	biomass conservation technology
3rd	11th	application of biomass
	12th	direct and thermo chemical conservation method
	13th	bio chemical conservation method
441-	14th	Gasifier
4th	15th	steps of gasification
	16th	advantages and types of gasifier
	17th	revision and class test
541 ₂	18th	Wind energy
5th	19th	Wind energy conservation
	20th	Wind mills, types
	21st	Electricity generation for wind energy
6.1	22nd	Classification of wind power plants
6th	23rd	selection of site for wind power plants
	24th	advantages and disadvantages of wind power plants
	25th	energy storage
	26th	Geo thermal and tidal energy
7th	27th	Geo thermal energy sources
ļ	28th	prime mover for geothermal energy conversion
	29th	power generation by geothermal source
0.1	30th	Advantages and disadvantages of geothermal energy
8th	31st	ocean energy -ocean thermal-energy conversion
	32nd	tidal energy

9th class test and revision	
35th Magneto Hydro Dynamic (MHD)-working	
36th advantages and disadvantages of MHD	
37th Types of MHD generation system	
38th Fuel cell -working principle	
10th 39th Direct methanol fuel cell	
40th Hydrazine fuel cell	
41st Hydrocarbon ode cell	
42nd Hydrogen oxygen fuel cell	
11th 43rd efficiency and work output	
44th cell voltage	
45th fuel cell performance	
46th application of fuel cell	
47th advantage and disadvantages of fuel cell	
48th revision and class test	
49th Hydro energy Mini & micro hydro plants	
50th Micro Hydro Plant(MHP)_	
51st advantages of MHP	
52nd micro hydro plants	
53rd Composition of a mini hydro electric plant	
54th Energy conservation and management, need of energy conservation	vation
55th Environmental aspects, energy efficiency	
56th Fluorescent tube, CFL, LED	
57th Need of energy efficient devices	
Energy conservation in domestic sector, in home appliances, in agriculture sector	n industrial sector, in
59th Macro level approach for energy conservation at design stage	
60th Revision and class test	

LESSON PLAN

Name of the faculty Mr. Lokesh

Discipline Electrical Engg.

3rd Semester

Electrical Engineering Design and Drawing – I (EEDD-I) Subject

Lesson Plan Duration 15 weeks

Work Load Practicals - 06

		Practical
Week	Practical Day	Topic
1 st	1 st	Drawing of various Electrical Symbols used in Domestic and Industrial Installation.
1	2 nd	Drawing of Electrical Symbols used in Power System (Generation, Transmission and Distribution including Sub-stations).
2 nd	3 rd	Problem solving session including sheet checking and viva-voce for Unit-1.
2	4 th	Drawing of Wiring diagram of light & sheet checking.
3 rd	5 th	Drawing of Wiring diagram of fan & sheet checking.
3	6 th	Drawing of Wiring diagram of bell & sheet checking.
4 th	7 th	Drawing of Wiring diagram of alarm circuits & sheet checking.
4	8 th	Drawing of Staircase wiring & sheet checking.
5 th	9 th	Drawing of godown wiring & sheet checking.
5	10 th	Problem solving session including sheet checking and viva-voce for Unit-2.
6 th	11 th	Design and Drawing of panels/Distribution board using MCB, ELCB main switches and change over switches for domestic installation & sheet checking.
O	12 th	Design and Drawing of panels/Distribution board using MCB, ELCB main switches and change over switches for industrial installation & sheet checking.
7 th	13 th	Design and Drawing of panels/Distribution board using MCB, ELCB main switches and change over switches for commercial installation & sheet checking.
	14 th	Checking of drawing sheet, taking doubts of the students and to give clarifications on the specific parts they have not understood.

8 th	15 th	Problem solving session including sheet checking and viva-voce for Unit-3.
0	16 th	Orthographic projections of Bus bar post/ Kit Kat & sheet checking.
9 th	17 th	Orthographic projections of Pin type and shackle type insulator (Pin Type 11kV/66kV) & sheet checking.
9	18 th	Orthographic projections of Bobbins of a small transformer / choke & sheet checking.
10 th	19 th	Orthographic projections of Stay insulators/Suspension type insulators & sheet checking.
	20 th	Orthographic projections of Rotor of a squirrel cage induction motor & sheet checking.
11 th	21 st	Orthographic projections of Motor body (induction motor) as per IS Specifications (using outside dimensions) & sheet checking.
	22 nd	Orthographic projections of Slip rings of 3-phase induction Motor & sheet checking.
12 th	23 rd	Orthographic projections of Stator of 3 phase Induction motor (Sectional View) & sheet checking.
	24 th	Problem solving session including sheet checking and viva-voce for Unit-4.
	25 th	Basic of Auto CAD software.
13 th	26 th	Prepare wiring diagram and block diagrams for circuits/systems using any Engineering Graphic package (Auto CAD).
14 th	27 th	-Continued- Prepare wiring diagram and block diagrams for circuits/systems using any Engineering Graphic package (Auto CAD).
	28 th	Drawing of wiring diagram using Auto CAD.
	29 th	Problem solving session including sheet checking and viva-voce for Unit-5.
15 th	30 th	Checking of drawing sheet, taking doubts of the students and to give clarifications on the specific parts they have not understood.

Electrical Engineering Department

Lesson plan (for odd-semester as per revised curriculum and study scheme)

Name of Facult	ty	Ms. Monika Mehta
Discipline		Electrical Engineering
Semester		3 rd (odd- semester)
Subject		Electrical and Electronics Engineering Materials
Lesson Plan Du	ıration	2022 - 2023
Work load (The	eory + Prac	etical) Per Week (04+00)
Week	Day	Topics
	1	Introduction to Classification of materials
4 et	2	Classification of Conducting ,semi conducting and insulating materials based on atomic structure
1^{st}	3	Classification based on energy bands
	4	Revision and Class test of 1st unit
	1	Introduction to Conducting Materials Resistance and factors affecting it
and	_	Such as alloying and temperature
2^{nd}	2	Classification of conducting material as low resistivity and high resistivity materials
	3	low resistance materials Copper: General properties as conductor resistivity, temperature
	4	coefficient and density
	4	Mechanical properties of hard-drawn and annealed copper corrosion, contact resistance
	1	Application of copper in the field of electrical engineering.
$3^{\rm rd}$	2	Aluminum: General properties as resistivity, temperature coefficient, density
3	3	Mechanical properties of hard and annealed aluminum, solder ability, contact resistance
	4	Applications in the field of electrical engineering.
	1	Steel: Mechanical properties of steel
$4^{ m th}$	3	Applications in the field of electrical engineering. Introduction to bundle conductors and its applications
7	4	Low resistivity copper alloys Brass, Bronze and their applications
	1	Applications of special metals e.g. Silver, Gold, Platinum etc
	2	High resistivity materials and their applications constantan,
5 th	3	Nichrome, mercury, platinum, carbon and tungsten
	4	Superconductors and their applications
	1	Revision and problem related to 2 nd unit
	2	Class Test of 2 nd unit
6^{th}	3	Review of Semi-conducting Materials, Semi-conductors and their properties
	4	Materials used for electronic components like resistors, capacitors, diodes, transistors and
		inductors etc
	1	Revision and problem related to 3 rd unit
	2	Class Test of 3 rd unit
$7^{\rm th}$	3	Insulating materials; General Properties
	4	Electrical Properties: Resistivity, surface resistance, dielectric loss, dielectric strength
	1	Physical Properties Hygroscopicity, tensile and compressive strength, abrasive resistance,
		brittleness
8 th	2	Thermal Properties: Heat resistance, classification according to permissible
		temperature rise
	3	Chemical Properties: Solubility, chemical resistance, weather ability
	4	Mechanical properties, mechanical structure, tensile structure
	1	Revision and problem related to 4 th unit
l a	2	Class Test of 4 th unit
9 th	3	Introduction to Insulating Materials and their applications

	4	Plastics Definition and classification				
	1	Thermosetting materials: Bakelite, amino resins, epoxy resins their important properties and				
		applications				
	2	Thermo-plastic materials: PVC, Polyethylene, silicones, their important properties and				
10^{th}		applications				
	3	Natural insulating materials, properties and their applications				
	4	Mica and Mica products, Asbestos and asbestos products, Ceramic materials				
	1	Glass and glass products Cotton, silk, jute, paper, Rubber, Bitumen				
	2	Mineral and insulating oil for transformer, insulating varnish for coating and impregnation				
	3	Gaseous materials; Air, Hydrogen, Nitrogen, SF their properties and applications				
11^{th}	4	Revision and problem related to 5 th unit				
	1	Class Test of 5 th unit				
	2	Magnetic Materials: Introduction, Ferromagnetic materials, permeability				
12^{th}	3	B-H curve, magnetic saturation, hysteresis loop including coercive force and residual magnetism				
	4	Concept of eddy current and hysteresis loss, Curie temperature, magnetostriction effect.				
	1	Soft Magnetic Materials: Alloyed steels with silicon: High silicon alloy steel for transformers				
13 th	2	low silicon alloy steel for electric rotating machines				
	3	Cold rolled grain oriented steels for transformer, Non-oriented steels for rotating machine, Nickel-				
		iron alloys, Soft Ferrites				
	4	Hard magnetic materials Tungsten steel, chrome steel , hard ferrites cobalt and				
		Steel applications.				
	1	Revision and problem related to 6 th unit				
	2	Class Test of 6 th unit				
$14^{ m th}$	3	Special Materials Thermocouple, bimetals				
	4	leads soldering and fuses material and their applications				
	1	Revision and problem related to 7 th unit				
	2	Introduction of various engineering materials necessary for fabrication of electrical machines				
15 th	3	such as motors, generators, transformers etc.				
	4	Revision and problem related to 8 th unit				
	1	Class Test of 8 th unit				
16 th	2	Viva-voice related to subject				
	3	Revision/Review/Test of old HSBTE Papers				
	4	Revision/Review/Test of old HSBTE Papers				
		•				