LESSON PLAN (SEPTEMBER-2022)

Name of faculty

Discipline

Semester

Subject

Lesson Plan Duration

15 weeks

CNC MACHINES AND AUTOMATION

BHARAT BHUSHAN

Mechanical Engineering 5TH Semester

Work load (Lecture/ Practical) per week (in hours)

3 Hours Lecture & 4 Hours Practical

	THEORY		PKAUIIUAL	
WEEK	Day Lectur	Tonic (Including Assignment/Test)	Day Practica	Practical
	1 1	1 Unit 1 Introduction Introduction to		Study the constructional details of
1	1	NC Basic Components of NC binary	1	CNC lathe
1		coding		CIVE lattic.
	2	MCU input devices advantages		
	2	/disadvantages of NC machines over		
		conventional machines		
	3	CNC & DNC, their types.	2	Study the constructional details of
	4	their advantages, disadvantages and	_	CNC lathe.
		applications,		
	5	selection of parts to be machined on	3	Study the constructional details of
2		CNC machines,		CNC milling machine.
	6	Problems with conventional NC,		Study the constructional details of
	7	Rules for Axis identification, New	4	CNC milling machine.
		developments in NC,		
	8	PLC Control and its purpose.		
	9	Unit- 2 Construction and Tooling.	5	Study the constructional details and
3		Design features, special mechanical		working of: Automatic tool changer
		design features, specification Chart of		and tool setter, Multiple pallets,
	10	CNC machines,		Swarf removal & Safety devices.
	10	types of slideways, balls, rollers,		
	11	motor- servo/stepper,	6	
	11	axis drive and leadscrew, recirculating	6	Study the constructional details and
,	10	ball screw,		working of: Automatic tool changer
	12	nut assembly, & Assignment No1.		and tool setter, Multiple pallets,
	13	swarf removal safety and guarding	7	Develop a part programme for
4	15	devices	/	following lathe operations and make
Т	14	Various cutting tools for CNC		the job on CNC lathe and CNC
	11	machines, overview of tool holder.		turning center. (for finish pass only)
				Calculating coordinate points for a
				cylindrical job by considering sign
				convention for lathe -Plain turning,
				facing operations and Taper turning
				operations.

	15	different pallet systems,	8	Develop a part programme for
	16	automatic tool changer system,		following lathe operations and make
				the job on CNC lathe and CNC
				turning center.(for finish pass only)
				Calculating coordinate points for a
				cylindrical job by considering sign
				convention for lathe -Plain turning,
				facing operations and Taper turning
	17		0	operations .
5	17	tool change cycle, management of a	9	Develop a part programme for
5		tool room.		the ich on CNC lathe and CNC
				the job on CINC lathe and CINC
				Coloulating conditions paints for a
				Calculating coordinate points for a
				convention for latha Operation along
				contour using circular interpolation
	18	Unit-3 System Devices- Control		Develop a part programme for
	10	System	10	following lathe operations and make
	19	1 st Class Test.	10	the job on CNC lathe and CNC
	20	Feedback control classification(open		turning center.(for finish pass only)
		loop, closed loop).		Calculating coordinate points for a
				cylindrical job by considering sign
				convention for lathe -Operation along
				contour using circular interpolation.
	21	Actuators, Transducers and Sensors,	11	Develop a part programme for the
6		characteristics of sensors,		following milling operations and
	22	Tachometer, LVDT, opto-interrupters,		make the job on CNC milling (for
		potentiometers for linear,		finish pass only)- Plain milling.
				Calculate coordinate points for a zig
				zag job by considering sign
	- 22	1 1 1	10	convention for milling.
	23	angular position, encoder and	12	Develop a part programme for the
	24	decoder,		following milling operations and
	24	axis drives, other classifications of		make the job on CNC milling (for
		UNC machines-Feedback, motion,		Calculate econdinate nainta for a rig
		positioning.		calculate cooldinate points for a Zig
				convention for milling
	25	Unit-4 Part Programming - Part	13	Develop a part programme for the
7		programming and basic procedure of		following milling operations and
		part programming.		make the job on CNC milling (for
		1 F-0,		finish pass only)- Slot
				milling.Calculate coordinate points
				for a zig zag job by considering sign
				convention for milling.

	26	NC words, Blocks, part programming		Develop a part programme for the
		formats,	14	following milling operations and
	27	simple programming for rational		make the job on CNC milling (for
		components		finish pass only)- Slot
	28	(Point to point, Straight line, curved		milling.Calculate coordinate points
		surface),		for a zig zag job by considering sign
	20		1.7	convention for milling.
0	29	tool off sets, cutter radius	15	Develop a part programme for the
8		compensation,		notice the job on CNC milling (for
				finish pass only)-Contouring
				Calculate coordinate points for a zig
				zag job by considering sign
				convention for milling.
	30	wear compensation. Assignment No		Develop a part programme for the
		2.	16	following milling operations and
	31	Advanced structures: Advantages of		make the job on CNC milling (for
		using advanced structures,		finish pass only)-Contouring.
	32	1 st Sessional Test		Calculate coordinate points for a zig
				zag job by considering sign
	22	· · · · · · · · · · · · · · · · · · ·	17	convention for milling.
0	33	part programming using canned	1/	Develop a part programme for the
9	24	cycles,		make the job on CNC milling (for
	54	subroutines and do loops,		finish pass only)- Pocket
				milling.Calculate coordinate points
				for a zig zag job by considering sign
				convention for milling.
	35	mirror image.	18	Develop a part programme for the
				following milling operations and
	36	2 nd Class Test		make the job on CNC milling (for
				finish pass only)-Pocket
				milling.Calculate coordinate points
				for a zig zag job by considering sign
	27	Unit 5 Ducklasse in CNO Marking	10	Convention for milling.
10	5/	Common problems in UNC Machines -	19	Develop a part program by using
10		electrical		turning facing
,	38	pneumatic electronic	20	Develop a part program by using
	39	PC components of NC machines	20	canned cycle on CNC lathe for
	40	diagnostic study of common problems		turning, facing.
		and remedies,		
	41	use of on-line fault finding diagnosis	21	Preparation of work instruction for
11		tools in CNC machines,		machine operator.
	42	methods of using discussion forums,	22	Preparation of work instruction for
	43	environmental problems.		machine operator.

	44	Unit-6 Automation and NC system -		
		Automation,		
	45	suitability of production system to	23	Preparation of preventive
12		automation,		maintenance schedule for CNC
				machine.
	46	types, emerging trends in automation,	24	Preparation of preventive
		& Assignment No3.		maintenance schedule for CNC
	47	2 nd Sessional Test		machine.
	48	automatic assembly,		
	49	manufacture of printed circuit boards,	25	Demonstration through industrial
13	50	manufacture of integrated Circuits,		visit for awareness of actual working
				of FMS in production.
	51	3 rd Class Test	26	Demonstration through industrial
	52	Overview of FMS, AGV,		visit for awareness of actual working
				of FMS in production.
	53	ASRS, Group technology,	27	Use of software for turning
14				operations on CNC turning center.
	54	CAD/CAM and CIM,		Use of software for turning
	55	Automated Identification system,	28	operations on CNC turning center.
	56	concept of AI,		
	57	Robotics,	29	Use of software for milling
15	58	nomenclature of joints, motion.		operations on machine centres.
	59	Assignment No4.	30	Use of software for milling
ĺ	60	3 rd Sessional Test.		operations on machine centres.

LESSON PLAN (SEPTEMBER-2022)Name of facultyISHU MONGADisciplineMechanical EngineeringSemester5th SemesterSubjectTHEORY OF MACHINESLesson Plan Duration15 weeksWork load (Lecture/ Practical) per week (in hours)3 Hrs. Lecture & 2 Hrs. Practical

THEORY

WEEK	Day Lecture	Topic(Including Assignment/Test)
1	1	Simple Mechanisms - Introduction to link,
	2 kinematic pair,	
	3	lower and higher pair, Kinematic chain,
2	4	mechanism,
	5	Inversions.
	6	Different types of mechanisms (with examples)
		Assignment Unit – 1
3	7	Power Transmission - Introduction to Belt
	8	Rope drives
	9	Types of belt drives
		types of pulleys
4	10	Concept of velocity ratio, slip and creep;
	11	crowning of pulleys (simple numericals)
	12	Flat and V belt drive:, Ratio of driving tensions
5 13 power transmitted, centrifugal tensi		power transmitted, centrifugal tension, condition for maximum horse power
		(simple numericals)
	14	Class test
	15	Different types of chains and their terminology
	Gear terminology,	
6	16	types of gears and their applications;
	17	simple and compound gear trains;
	18	power transmitted by simple spur gear & Assignment Unit - 2
		1 st sessional test
7	19	Flywheel - Principle of flywheel
	20	applications of flywheel
	21	Turning - moment diagram of flywheel for different engines
8	22	Fluctuation of speed
	23	fluctuation of energy
	24	Coefficient of fluctuation of speed, Simple numerical problems on fluctuation
		of speed
9	25	Class test
26 Simple numerical problems on fluctuation of energy & Assignme		Simple numerical problems on fluctuation of energy & Assignment Unit - 3
	27	Governor - Principal of governor
		Simple description of Watt governor,

10	28	working of Watt governor,		
	29	Simple description of Porter governor		
	30	working of Porter governor		
		Simple description of Hartnel governor		
11	31	working of Hartnel governor		
	32	Simple numericals based on watt governor		
	33	Hunting of a governor		
		isochronism of a governor		
12	34	Stability of a governor		
	35	sensitiveness of a governor & Assignment Unit – 4		
	36	Definition and function of cam, different types of cams and followers with simple line diagram		
13	37	Terminology of cam profile		
	38	Displacement diagram for uniform velocity, S.H.M and uniform acceleration and deceleration & Assignment Unit -5		
	39	Balancing - Concept of balancing 2 nd Sessional test		
14	40	Introduction to balancing of rotating masses (simple numericals)		
	41	Class test		
	42	Simple problems related to several masses rotating in different planes		
15	43	Simple problems related to several masses rotating in different planes		
	44	Simple problem related to several masses rotating in different planes & Assignment Unit -6		
	45	Vibrations - Concept of vibrations , vibrations types – longitudinal vibration , torsional vibration , (simple numericals) Damping of vibrations ,		
		Causes of vibrations in machines,		
		vibrations harmful effects		
		vibrations remedies & Assignment Unit -7		
		3 ^{ra} Sessional test		

Week	Practical
1	To study inversion of Four Bar Mechanism, Single Slider Crank Chain
	Mechanism and Double Slider Crank Chain Mechanism with the help of
	working models.
2	Viva-Voce
3	To study various kinds of belts drives and gear trains with the help of
	working models.

4	Viva-Voce		
5	To find the moment of inertia of a flywheel.		
6	Viva-Voce		
7	To Study the different types of centrifugal governors & to plot graph		
	between R.P.M & Displacement.		
8	Viva-Voce		
9	To construct cam profile for uniform velocity, SHM and uniform acceleration and retardation on drawing sheet.		
10	Viva-Voce		
11	To perform the experiment of Balancing of rotating parts and find the unbalancedcouple and forces.		
12	Viva-Voce		
13	Revision of experiment		
14	Revision of experiment		
15	Revision of experiment		

N PLAN
SUNIL KUMAR
Mechanical Engineering
5 th Semester
Machine Design
15 weeks
4 Hours Lecture

	THEORY		
WEEK	EK Day		
	Lectur	Tonic(Including Assignment/Test)	
1	1	Design – Definition. Type of design. necessity of design	
	2	Comparison of designed and undersigned work	
	3	Design procedure	
2	4	Characteristics of a good designer	
	5	Design terminology: stress, strain, factor of safety, factors affecting factor of safety	
	6	stress concentration, methods to reduce stress concentration, fatigue, endurance limit.	
3	7	General design consideration	
	8	Codes and Standards (BIS standards)	
	9	Engineering materials and their mechanical properties	
4	10	Properties of engineering materials: elasticity, plasticity, malleability, ductility	
	11	toughness, hardness and resilience. Fatigue, creep, tenacity and strength etc.	
	12	Selection of materials, criteria of material selection	
5	13	Class test	
	14	Design Failure ,Various design failures-maximum stress theory, maximum strain theory	
	15	Classification of loads	
6	16	Design under tensile, compressive and torsional loads.	
	17	Type of shaft, shaft materials. Type of loading on shaft, standard sizes of	
		shaft available	
	18	Shaft subjected to torsion only, determination of shaft diameter (hollow and solid shaft)	
		on the basis of :Strength criterion, Rigidity criterion	
	10		
	19	Determination of shaft diameter (hollow and solid shaft) subjected to combined torsion and bending	
	20	Design of Key Types of key, materials of key, functions of key	
	21	Failure of key (by Shearing and Crushing).	
8	22	1 st Sessional test	
	23	Design of key (Determination of key dimension) Effect of keyway on shaft strength.	
		(Figures and problems).	
	24	Design of Joints Types of joints - Temporary and permanent joints, utility of various	
		joints	
9	25	Temporary Joint: Knuckle Joints – Different parts of the joint, material used for the joint,	
		type of knuckle Joint, design of the knuckle joint. (Figures and problems).	

	26	Cotter Joint – Different parts of the spigot and socket joints, Design of spigot and socket joint		
	27	Class test		
10	28	Welded Joint - Welding symbols. Type of welded joint, strength of parallel and transverse fillet welds.		
	29	Strength of combined parallel and transverse weld.		
	30	Riveted Joints. : Rivet materials, Rivet heads,		
11	31	leak proofing of riveted joint – caulking and fullering.		
	32	Different modes of rivet joint failure.		
	33	Design of riveted joint – Lap and butt, single and multi riveted joint.		
12	34	Design of Flange Coupling		
	35	Numerical		
	36	2 nd Sessional test		
13	37	Necessity of a coupling, advantages of a coupling, types of couplings, design of muff coupling, design of flange coupling. (both protected type and unprotected type).		
	38	Class test		
	39	Design of Screwed Joints ,Introduction, Advantages and Disadvantages of screw joints, location of screw joints.		
14	40	Important terms used in screw threads, designation of screw threads		
	41	Initial stresses due to screw up forces, stresses due to combined forces		
	42	Design of power screws (Press, screw jack, screw clamp)		
15	43	Use of design data book during the examination is allowed.		
	44	The paper setter should normally provide all the relevant data for the machine		
		design in the question paper.		
	45	3 rd Sessional test		

LESSON PLAN (SEPTEMBER-2022)						
Name of Faculty : BHARAT BHUSHAN						
Discipl	Discipline : Mechanical Engineering					
Semest	ter			: 5th Semester		
Subject	t			: Refrigeration and air conditioning		
Lesson	Plan I	Duration:		: 15 Weeks		
Work I	Load (I	Lecture/Practical) per week(in ho	ours)	: 3 Hrs. Lecture & 2 Hrs. Practical		
Week	Theory			Practical		
	Dav	Topic(Including	Dav	Торіс		
	Day	1 Fundamentals of	Day			
	1	Refrigeration, Introduction to refrigeration, and air conditioning, meaning of refrigerating effect	1	Introduction to R&AC Lab		
1		units of refrigeration, COP,				
	2	difference between COP and efficiency				
	3	methods of refrigeration, Natural system and artificial system.	2	Introduction to R&AC Lab		
	4	Introduction of Vapour Compression System	3	Identify various tools of refrigeration kit		
2	5	necessity of vapour compression system				
	6	T- S and p– H charts of vapour compression cycle of refrigeration	4	Identify various tools of refrigeration kit		
	7	dry, wet and superheated compression.	5	Practice in cutting, bending, flaring, swaging and brazing of tubes.		
3	8	Neumericals and problems discussions				
	9	Effect of sub cooling,	6	Practice in cutting, bending, flaring, swaging and brazing of tubes.		
4	10	Effect of super heating, Numerical problems	7	Study of thermostatic switch, LP/HP cut out overload protector filters, strainers and filter driers.		

	11	actual vapour compression]	
		system		
	12	Introduction to air refrigeration system	8	protector filters, strainers and filter driers.
5	13	advantage and disadvantage of air refrigeration over vapour compression system.	9	Viva-Voce
	14	Ist class test		
	15	Sessional Test of Unit 1 & 2	10	Viva-Voce
6	16	Functions and classifications of refrigerants	11	Identify various parts of a refrigerator and window air conditioner
	17	Properties of R - 717, R - 22, R-134 (a), CO2, R 12 R 502ata		
	18	Properties of ideal refrigerants, selection of refrigerants.	12	Identify various parts of a refrigerator and window air conditioner
	19	Principle and working of simple vapour absorption system and domestic electrolux refrigeration systems.	13	To find COP of Refrigeration system
7	20	Solar power refrigeration		
	21	advantages and disadvantages of solar power refrigeration system over vapour compression system.,	14	To find COP of Refrigeration system
8	22	Refrigeration Equipment ,Compressors- Function, various types of compressors	15	To measure air flow using anemometer
	23	Condensers - Function, various types of condensers		
	24	Evaporators- Function, types of evaporators	16	To measure air flow using anemometer
9	25	Expansion Valves - Function	17	Charging of a refrigerator/ air conditioner
	26	various types such as capillary tube, thermostatic expansion valve,	18	Charging of a refrigerator/ air conditioner

			-	
	27	low side and high side float valves, application of various expansion valves		
10	28	Safety Devices-Thermostat, overload protector, LP, HP cut out switch	19	Viva-Voce
	29	2 nd class test		
	30	2 nd Sessional test of Units3,4&5	20	Viva-Voce
11	31	Psychrometry ,Definition, importance	21	To detect faults in a refrigerator/ air conditioner
	32	specific humidity, relative humidity, degree of saturation		
	33	DBT, WBT, DPT	22	To detect faults in a refrigerator/ air conditioner
12	34	sensible heat, latent heat, Total enthalpy of air.	23	Visit to an ice plant or cold storage plant. or central air
	35	Applied Psychrometry and Heat Load Estimation		
	36	Psychrometric chart, various lines	24	To find COP ICE-Plant Refrigeration system
	37	psychrometric process, by pass factor, room sensible heat factor, effective room sensible heat factor	25	To find COP of ICE-Plant Refrigeration system
13	38	grand sensible heat factor,		
	39	Heating and humidification, cooling and dehumidification	26	To find COP of Cold storage Refrigeration system
14	40	window air-conditioning, split type air-conditioning	27	To find COP of Cold storage Refrigeration system
	41	car air-conditioning, central air-conditioning. Latest development in refrigeration and air conditioning		Problems Discussions and feed back
	42	3 rd class test		
15	43	Inverter technology, auto- defrosting, blast cooling, star rating.	29	Viva-Voce

	LESSON PLAN (SEPTEMBER-2022)					
Name	of Faculty	: PARDEEP				
Discipl	ine	: Mechanical Engineering				
Semest	ter	: 5th Semester				
Subjec	t	: Workshop Technology –III				
Lesson	Plan Duratio	on: : 15 Weeks				
Work I	Load (Lecture	e/Practical) per week(in hours) : 3Hrs. Lecture				
Week	Theory					
	Lecture Day	Topic(Including Assignement/Test)				
1	1	Specification and working principle of milling machine				
	2	Classification, brief description and applications of milling machines				
	3	Details of column and knee type milling machine				
	4	Milling machine accessories and attachment – Arbors, adaptors, collets, vices, circular table				
2	5	indexing head and tail stock, vertical milling attachment, rotary table.				
	6	Milling methods - up milling and down milling				
	7	Identification of different milling cutters and work mandrels				
3	8	Work holding devices, straddle milling and gang milling.				
	9	Milling operations – face milling, angular milling, form milling,				
4	10	Cutting parameters				
	11	Indexing on dividing heads, plain and universal dividing heads				
	12	Indexing methods: direct, Plain or simple, compoun differential and angular indexing, numerical problems on indexing d,				
5	13	Purpose of grinding, Various elements of grinding wheel – Abrasive, Grade, structure, Bond				
	14	Common wheel shapes and types of wheel – built up wheels, mounted wheels and Specification of grinding wheels as per BIS. diamond wheels				
	15	Truing, dressing, balancing and mounting of wheel				
6	16	Revision of Unit I & 11				

	17	1 st class test			
	1/				
	18	1 st Sessional test			
	19	Grinding methods – Surface grinding, cylindrical			
7	20	grinding and centreless grinding			
	21	Grinding machine – Cylindrical grinder, surface			
	22	grinder, internal grinder, centreless grinder, tool and cutter grinder			
8	23	Selection of grinding wheel			
	24	Gear hobbing Gear shaping			
	25	Mechanical Process - Ultrasonic machining (USM): Introduction, principle,			
9	26	process, advantages and limitations, applications			
	27	Electro Chemical Processes - Electro chemical machining (ECM) – Fundamental principle, process, applications			
	28	Electro chemical Grinding (ECG) – Fundamental principle, process, application			
10	29	Electrical Discharge Machining (EDM) - Introduction, basic EDM circuit,			
	30	Principle, metal removing rate, dielectric fluid, applications			
	31	Laser beam machining (LBM) – Introduction, machining process and applications			
11	32	Electron beam machining (EBM)- Introduction, principle, process and applications			
	35	Problems discuss of Unit-2nd			
	33	Problems discuss of Unit-3 rd			
12	34	Problems discuss of Unit-4 th			
	35	2 nd class test			
12	36	2 nd Sessional test			
13	37	Metal spraying – Wire process, powder process, applications			

	38	Powder coating; electroplating and organic coating
	39	Purpose of finishing surfaces.
14	40	Surface roughness-Definition and units, Honing Process, its applications, Description of hones.
	41	Lapping process, its applications , Description of lapping compounds and tools. Brief idea of lapping machines.
	42	Super finishing process, its applications, Polishing, Buffing
15	43	Problems discuss of Unit-5th
	44	3 rd class test
	45	3 rd Sessional test