Chapter 3
 Binomial Theorem

3.1 Introduction:

An algebraic expression containing two terms is called a binomial expression, Bi means two and nom means term. Thus the general type of a binomial is $a+b, x-2,3 x+4$ etc. The expression of a binomial raised to a small positive power can be solved by ordinary multiplication , but for large power the actual multiplication is laborious and for fractional power actual multiplication is not possible. By means of binomial theorem, this work reduced to a shorter form. This theorem was first established by Sir Isaac Newton.

3.2 Factorial of a Positive Integer:

If n is a positive integer, then the factorial of ' n ' denoted by n ! or
n and is defined as the product of $\mathrm{n}+$ ve integers from n to 1 (or 1 to n)

$$
\text { i.e., } \quad n!=n(n-1)(n-2) \ldots \ldots 3.2 .1
$$

For example,

$$
\begin{array}{cc}
& 4!=4 \cdot 3 \cdot 2 \cdot 1=24 \\
\text { and } & 6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720
\end{array}
$$

one important relationship concerning factorials is that

$$
\begin{equation*}
(n+1)!=(n+1) n! \tag{1}
\end{equation*}
$$

\qquad
for instance,

$$
\begin{aligned}
5! & =5.4 .3 .2 .1 \\
& =5(4.3 .2 .1) \\
5! & =5.4!
\end{aligned}
$$

Obviously, $1!=1$ and this permits to define from equation (1)

$$
\mathrm{n}!=\frac{(\mathrm{n}+1)!}{\mathrm{n}+1}
$$

Substitute 0 for n, we obtain

$$
\begin{aligned}
& 0!=\frac{(0+1)!}{0+1}=\frac{1!}{1}=\frac{1}{1} \\
& 0!=1
\end{aligned}
$$

3.3 Combination:

Each of the groups or selections which can be made out of a given number of things by taking some or all of them at a time is called combination.

In combination the order in which things occur is not considered e.g.; combination of a, b, c taken two at a time are $a b, b c, c a$.

The numbers $\binom{\mathrm{n}}{\mathrm{r}}$ or ${ }^{\mathrm{n}} \mathrm{c}_{\mathrm{r}}$
The numbers of the combination of n different objects taken ' r ' at a
time is denoted by $\binom{\mathrm{n}}{\mathrm{r}}$ or ${ }^{\mathrm{n}} \mathrm{c}_{\mathrm{r}}$ and is defined as,

$$
\binom{\mathrm{n}}{\mathrm{r}}=\frac{n!}{r!(n-r)!}
$$

e.g, $\quad\binom{6}{4}=\frac{6!}{4!(6-4)!}$

$$
=\frac{6 \times 5 \times 4!}{4!\times 2!}=\frac{6 \times 5}{2 \times 1}=15
$$

Example 1: Expand $\binom{7}{3}$
Solution. $\quad\binom{7}{3}=\frac{7!}{3!(7-3)!}$

$$
\begin{aligned}
& =\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3.2 \cdot 1 \cdot 4!} \\
& =35
\end{aligned}
$$

This can also be expand as

$$
\binom{7}{3}=\frac{7.6 \cdot 5}{3.2 .1}=35
$$

If we want to expand $\binom{7}{5}$, then

$$
\binom{7}{5}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=21
$$

Procedure: Expand the above number as the lower number and the lower number expand till 1.

Method 2

For expansion of $\binom{n}{r}$ we can apply the method:
a. If r is less than $(n-r)$ then take r factors in the numerator from n to downward and r factors in the denominator ending to 1 .
b. If $n-r$ is less than r, then take $(n-r)$ factors in the numerator from n to downward and take $(n-r)$ factors in the denominator ending to 1 . For example, to expand $\binom{7}{5}$ again, here $7-5=2$ is less than 5, so take two factors in numerator and two in the denominator as, $\binom{7}{5}=\frac{7.6}{2.1}=21$

Some Important Results

(i). $\binom{n}{0}=\frac{n!}{0!(n-0)!}=\frac{n!}{1 \times n!}=1$
(ii) $\quad\binom{n}{n}=\frac{n!}{n!(n-n)!}=\frac{n!}{n!\times 0!}=\frac{n!}{n!\times 1}=1$
(iii) $\binom{n}{r}=\binom{n}{n-r}$

For example

$$
\begin{aligned}
& \binom{4}{0}=\binom{4}{4}=1 \text { as } \quad \frac{4!}{0!(4-0)!}=\frac{4!}{4!0!} \\
& 1=1 \\
& \binom{4}{3}=\binom{4}{1}=4 \quad \text { as } \quad \frac{4!}{3!.1!}=\frac{4!}{1!.3!}
\end{aligned}
$$

$$
\frac{4.3!}{3!.1!}=\frac{4.3!}{1!.3!}
$$

$$
4=4
$$

Note: The numbers $\binom{n}{r}$ or ${ }^{n} \mathrm{C}_{\mathrm{r}}$ are also called binomial co-efficients

3.4 The Binomial Theorem:

The rule or formula for expansion of $(a+b)^{n}$, where n is any positive integral power, is called binomial theorem .

For any positive integral n

$$
\begin{align*}
(a+b)^{n}= & \binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2}+\binom{n}{3} a^{n-3} b^{3} \ldots \ldots \\
& \left.+\binom{n}{r} a^{n-r} b^{r} \ldots \ldots \ldots+\binom{n}{n} b^{n} \ldots-\cdots-\cdots-\cdots-\cdots-\cdots-1\right) \tag{1}
\end{align*}
$$

or briefly, $\quad(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$
Remarks:- The coefficients of the successive terms are

$$
\binom{n}{0},\binom{n}{1},\binom{n}{2},----,\binom{n}{r}----,\binom{n}{n}
$$

and are called Binomial coefficients.
Note : Sum of binomial coefficients is 2^{n}

Another form of the Binomial theorem:

$$
\begin{align*}
& (a+b)^{n}=a^{n}+\frac{n}{1!} a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+\ldots \ldots+ \\
& \frac{n(n-1)(n-2)-----(n-r+1)}{r!} a^{n-r} b^{r}+\ldots \ldots \ldots+b^{n}--\cdots----------(2) \tag{2}
\end{align*}
$$

Note: Since,

$$
\binom{\mathrm{n}}{\mathrm{r}}=\frac{n!}{r!(n-r)!}
$$

So, $\quad\binom{n}{0}=\frac{n!}{0!(n-0)!}=\frac{n!}{1 \times n!}=1$

$$
\begin{aligned}
& \binom{n}{1}=\frac{n!}{1!(n-1)!}=\frac{n(n-1)!}{1!(n-1)!}=\frac{n}{1!} \\
& \binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{n(n-2)!}{2!(n-2)!}=\frac{n(n-1)}{2!} \\
& \binom{n}{3}=\frac{n!}{3!(n-3)!}=\frac{n(n-1)(n-2)(n-3)!}{3!(n-3)!}=\frac{n(n-1)(n-2)}{3!}
\end{aligned}
$$

$$
\binom{\mathrm{n}}{\mathrm{r}}=\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)!\ldots \ldots .(\mathrm{n}-\mathrm{r}+1)(\mathrm{n}-\mathrm{r})!}{\mathrm{r}!(\mathrm{n}-\mathrm{r})!}
$$

$$
=\frac{n(n-1)(n-2) \ldots \ldots .(n-r+1)}{r!}
$$

$$
\binom{n}{n}=\frac{n!}{n!(n-n)!}=\frac{n!}{n!\times 0!}=\frac{n!}{n!\times 1}=1
$$

The following points can be observed in the expansion of $(a+b)^{n}$

1. There are $(\mathrm{n}+1)$ terms in the expansion.
2. The $1^{\text {st }}$ term is a^{n} and $(\mathrm{n}+1)$ th term or the last term is b^{n}
3. The exponent of ' a ' decreases from n to zero.
4. The exponent of ' b ' increases from zero to n.
5. The sum of the exponents of a and b in any term is equal to index n.
6. The co-efficients of the term equidistant from the beginning and end of the expansion are equal as $\binom{n}{r}=\binom{n}{n-r}$

3.5 General Term:

The term $\binom{n}{r} a^{n-r} b^{r}$ in the expansion of binomial theorem is
called the General term or $(r+1)$ th term. It is denoted by $\mathrm{T}_{\mathrm{r}+1}$. Hence

$$
\mathrm{T}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{~b}^{\mathrm{r}}
$$

Note: The General term is used to find out the specified term or the required co-efficient of the term in the binomial expansion

Example 2: Expand $(x+y)^{4}$ by binomial theorem:

Solution:

$$
\begin{aligned}
(x+y)^{4} & =x^{4}+\binom{4}{1} x^{4-1} y+\binom{4}{2} x^{4-2} y^{2}+\binom{4}{3} x^{4-3} y^{3}+y^{4} \\
& =x^{4}+4 x^{3} y+\frac{4 \times 3}{2 \times 1} x^{2} y^{2}+\frac{4 \times 3 \times 2}{3 \times 2 \times 1} x y^{3}+y^{4} \\
& =x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{aligned}
$$

Example 3: Expand by binomial theorem $\left(a-\frac{1}{a}\right)^{6}$

Solution:

$$
\begin{aligned}
\left(a-\frac{1}{a}\right)^{6} & =a^{6}+\binom{6}{1} a^{6-1}\left(-\frac{1}{a}\right)^{1}+\binom{6}{2} a^{6-2}\left(-\frac{1}{a}\right)^{2}+\binom{6}{3} a^{6-3}\left(-\frac{1}{a}\right)^{3}+ \\
& \binom{6}{4} a^{6-4}\left(-\frac{1}{a}\right)^{4}+\binom{6}{5} a^{6-5}\left(-\frac{1}{a}\right)^{5}+\binom{6}{6} a^{6-6}\left(-\frac{1}{a}\right)^{6} \\
& =a^{6}+6 a^{5}\left(-\frac{1}{a}\right)+\frac{6 \times 5}{2 \times 1} a^{4}\left(-\frac{1}{a^{2}}\right)+\frac{6 \times 5 \times 4}{3 \times 2 \times 1} a^{3}\left(-\frac{1}{a^{3}}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6 \times 5 \times 4 \times 3}{4 \times 3 \times 2 \times 1} a^{2}\left(-\frac{1}{a^{4}}\right)+\frac{6 \times 5 \times 4 \times 3 \times 2}{5 \times 4 \times 3 \times 2 \times 1} a\left(-\frac{1}{a^{5}}\right)^{5}+\left(-\frac{1}{a^{6}}\right) \\
& =a^{6}-6 a^{4}+15 a^{2}-20+\frac{15}{a^{2}}-\frac{6}{a^{5}}+\frac{1}{a^{6}}
\end{aligned}
$$

Example 4: Expand $\left(\frac{x^{2}}{2}-\frac{2}{x}\right)^{4}$

Solution:

$$
\begin{aligned}
\left(\frac{x^{2}}{2}-\frac{2}{x}\right)^{4}= & \left(\frac{x^{2}}{2}\right)^{4}+\binom{4}{1}\left(\frac{x^{2}}{2}\right)^{4-1}\left(\frac{-2}{x}\right)^{1}+\binom{4}{2}\left(\frac{x^{2}}{2}\right)^{4-2}\left(\frac{-2}{x}\right)^{2} \\
& +\binom{4}{3}\left(\frac{x^{2}}{2}\right)^{4-3}\left(\frac{-2}{x}\right)^{3}+\binom{4}{4}\left(\frac{x^{2}}{2}\right)^{4-4}\left(\frac{-2}{x}\right)^{4} \\
= & \frac{x^{4}}{16}+4\left(\frac{x^{2}}{2}\right)^{3}\left(-\frac{2}{x}\right)+\frac{4 \cdot 3}{2 \cdot 1}\left(\frac{x^{2}}{2}\right)^{2}\left(\frac{4}{x^{2}}\right)+ \\
& \frac{4 \cdot 3 \cdot 2}{3 \cdot 2 \cdot 1}\left(\frac{x^{2}}{2}\right)\left(-\frac{8}{x^{3}}\right)+\frac{16}{x^{4}} \\
= & \frac{x^{8}}{16}-4 \cdot \frac{x^{8}}{8} \cdot \frac{2}{x}+6 \cdot \frac{x^{4}}{4} \cdot \frac{4}{x^{2}}-4 \frac{x^{2}}{2} \cdot \frac{8}{x^{3}}+\frac{16}{x^{4}} \\
= & \frac{x^{8}}{16}-x^{5}+6 x^{2}-\frac{16}{x}+\frac{16}{x^{4}}
\end{aligned}
$$

Example 5: Expand (1.04) ${ }^{5}$ by the binomial formula and find its value to two decimal places.

Solution:

$$
\begin{aligned}
(1.04)^{5} & =(1+0.04)^{5} \\
(1+0.04)^{5}= & (1)^{5}+\binom{5}{1}(1)^{5-1}(0.04)+\binom{5}{2}(1)^{5-2}(0.04)^{2}+\binom{5}{3} \\
& (1)^{5-3}(0.04)^{3}+\binom{5}{4}(1)^{5-4}(0.04)^{4}+(0.04)^{5} \\
= & 1 .+0.2+0.016+0.00064+0.000128 \\
& +0.0000001024 \\
= & 1.22
\end{aligned}
$$

Example 6: Find the eighth term in the expansion of $\left(2 x^{2}-\frac{1}{x^{2}}\right)^{12}$

Solution: $\quad\left(2 \mathrm{x}^{2}-\frac{1}{\mathrm{x}^{2}}\right)^{12}$
The General term is, $\quad T_{r+1}=\binom{n}{r} a^{n-r} b^{r}$
Here $\quad \mathrm{T}_{8}=? \quad \mathrm{a}=2 \mathrm{x}^{2}, \quad \mathrm{~b}=-\frac{1}{\mathrm{x}^{2}}, \mathrm{n}=12, \mathrm{r}=7$,
Therefore, $\mathrm{T}_{7+1}=\binom{12}{7}\left(2 \mathrm{x}^{2}\right)^{12-7}\left(-\frac{1}{\mathrm{x}^{2}}\right)^{7}$

$$
\begin{aligned}
\mathrm{T}_{8} & =\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}\left(2 \mathrm{x}^{2}\right)^{5} \frac{(-1)^{7}}{\mathrm{x}^{14}} \\
\mathrm{~T}_{8} & =793 \times 32 \mathrm{x}^{10} \frac{(-1)}{\mathrm{x}^{14}} \\
\mathrm{~T}_{8} & =-\frac{25344}{\mathrm{x}^{4}}
\end{aligned}
$$

Eighth term $=\mathrm{T}_{8}=-\frac{25344}{\mathrm{x}^{4}}$

3.6 Middle Term in the Expansion (a + b) ${ }^{\mathbf{n}}$

In the expansion of $(a+b)^{n}$, there are $(n+1)$ terms.

Case I :

If \mathbf{n} is even then $(n+1)$ will be odd, so $\left(\frac{n}{2}+1\right)$ th term will be the only one middle term in the expension.

For example, if $\mathrm{n}=8$ (even), number of terms will be 9 (odd), therefore, $\left(\frac{8}{2}+1\right)=5^{\text {th }}$ will be middle term.

Case II:

If \mathbf{n} is odd then $(\mathrm{n}+1)$ will be even, in this case there will not be a single middle term, but $\left(\frac{\mathrm{n}+1}{2}\right)$ th and $\left(\frac{\mathrm{n}+1}{2}+1\right)$ th term will be the two middle terms in the expension.

For example, for $\mathrm{n}=9$ (odd), number of terms is 10 i.e. $\left(\frac{9+1}{2}\right)$ th and $\left(\frac{9+1}{2}+1\right)$ th i.e. $5^{\text {th }}$ and $6^{\text {th }}$ terms are taken as middle terms and these middle terms are found by using the formula for the general term.

Example 7: Find the middle term of $\left(1-\frac{x^{2}}{2}\right)^{14}$.

Solution:

We have $\mathrm{n}=14$, then number of terms is 15 .
$\therefore\left(\frac{14}{2}+1\right)$ i.e. $8^{\text {th }}$ will be middle term.
$\mathrm{a}=1, \mathrm{~b}=-\frac{\mathrm{x}^{2}}{2}, \quad \mathrm{n}=14, \mathrm{r}=7, \mathrm{~T}_{8}=$?
$\mathrm{T}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
$\mathrm{T}_{7+1}=\binom{14}{7}(1)^{14-7}\left(-\frac{\mathrm{x}^{2}}{2}\right)^{7}=\frac{14!}{7!7!}(-1)^{7} \frac{\mathrm{x}^{14}}{2^{7}}$
$\mathrm{T}_{8} \quad=\frac{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 17!} \frac{(-1)}{128} \cdot \mathrm{x}^{14}$
$\mathrm{T}_{8} \quad=-(2)(13)(11)(2)(3) \frac{1}{128} \cdot \mathrm{x}^{14}$
$\mathrm{T}_{8} \quad=-\frac{429}{16} \quad x^{14}$
Example 8 : Find the coefficient of x^{19} in $\left(2 x^{3}-3 x\right)^{9}$.
Solution:
Here, $\mathrm{a}=2 \mathrm{x}^{3}, \quad \mathrm{~b}=-3 \mathrm{x}, \quad \mathrm{n}=9$
First we find r .
Since $\operatorname{Tr}+1=\binom{n}{r} a^{n-r} b^{r}$

$$
\begin{align*}
& =\binom{9}{r}\left(2 x^{3}\right)^{9-r}(-3 x)^{r} \\
& =\binom{9}{r} 2^{9-r}(-3)^{r} x^{27-3 r} \cdot x^{r} \\
& =\binom{9}{r} 2^{9-r}(-3)^{r} \cdot x^{27-2 r} \ldots \tag{1}
\end{align*}
$$

But we require x^{19}, so put

$$
\begin{aligned}
19 & =27-2 \mathrm{r} \\
2 \mathrm{r} & =8 \\
\mathrm{r} & =4
\end{aligned}
$$

Putting the value of r in equation (1)

$$
\begin{aligned}
\mathrm{T}_{4+1} & =\binom{9}{\mathrm{r}} 2^{9-4}(-3)^{4} \mathrm{x}^{19} \\
& =\frac{9.8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} \cdot 2^{5} \cdot 3^{4} \mathrm{x}^{19} \\
& =630 \times 32 \times 81 \mathrm{x}^{19} \\
\mathrm{~T}_{5} \quad & =1632960 \times \mathrm{x}^{9}
\end{aligned}
$$

Hence the coefficient of x^{19} is 1632960
Example 9: Find the term independent of x in the expansion of $\left(2 \mathrm{x}^{2}+\frac{1}{\mathrm{x}}\right)^{9}$.

Solution:

Let $\mathrm{T}_{\mathrm{r}+1}$ be the term independent of x .
We have $\mathrm{a}=2 \mathrm{x}^{2}, \mathrm{~b}=\frac{1}{\mathrm{x}}, \mathrm{n}=9$

$$
\begin{align*}
& \mathrm{T}_{\mathrm{r}+1}=\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{~b}^{\mathrm{r}}=\binom{9}{\mathrm{r}}\left(2 \mathrm{x}^{2}\right)^{9-\mathrm{r}}\left(\frac{1}{\mathrm{x}}\right)^{\mathrm{r}} \\
& \mathrm{~T}_{\mathrm{r}+1}=\binom{9}{\mathrm{r}} 2^{9-\mathrm{r}} \cdot \mathrm{x}^{18-2 \mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}} \\
& \mathrm{~T}_{\mathrm{r}+1}=\binom{9}{\mathrm{r}} 2^{9-\mathrm{r}} \cdot \mathrm{x}^{18-3 \mathrm{r}} \ldots \ldots \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

Since T_{r+1} is the term independent of x i.e. x^{0}.
\therefore power of x must be zero.
i.e. $18-3 r=0 \Rightarrow r=6$
put in (1)

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & =\binom{9}{6} 2^{9-6} \cdot x^{0}=\frac{!9}{!6!3^{2^{3}}} \cdot 1 \\
& =\frac{39 \cdot 8^{4} \cdot 7 \cdot 6!}{6!\cdot 3 \cdot 2 \cdot 1} \cdot 8 \cdot 1=672
\end{aligned}
$$

Exercise 3.1

1. Expand the following by the binomial formula.
(i) $\left(x+\frac{1}{x}\right)^{4}$
(ii) $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{5}$
(iii) $\left(\frac{x}{2}-\frac{2}{y}\right)^{4}$
(iv) $(2 x-y)^{5}$
(v) $\quad\left(2 a-\frac{x}{a}\right)^{7}$
(vi) $\left(\frac{x}{y}-\frac{y}{x}\right)^{4}$
(vii) $\left(-x+y^{-1}\right)^{4}$
2. Compute to two decimal places of decimal by use of binomial formula.
(i) $(1.02)^{4}$
(ii) $\quad(0.98)^{6}$
(iii) $(2.03)^{5}$
3. Find the value of
(i) $\quad(x+y)^{5}+(x-y)^{5}$
(ii) $\quad(x+\sqrt{2})^{4}+(x-\sqrt{2})^{4}$
4. Expanding the following in ascending powers of x
(i)
$\left(1-x+x^{2}\right)^{4}$
(ii) $\left(2+x-x^{2}\right)^{4}$
5. Find
(i) the $5^{\text {th }}$ term in the expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{10}$
(ii) the $6^{\text {th }}$ term in the expansion of $\left(x^{2}+\frac{y}{2}\right)^{15}$
(iii) the $8^{\text {th }}$ term in the expansion of $\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)^{12}$
(iv) the $7^{\text {th }}$ term in the expansion of $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{9}$
6. Find the middle term of the following expansions
(i) $\left(3 x^{2}+\frac{1}{2 x}\right)^{10}$
(ii) $\left(\frac{\mathrm{a}}{2}-\frac{\mathrm{b}}{3}\right)^{11}$
(iii) $\left(2 x+\frac{1}{x}\right)^{7}$
7. Find the specified term in the expansion of
(i) $\left(2 x^{2}-\frac{3}{x}\right)^{10}: \quad$ term involving x^{5}
(ii) $\left(2 x^{2}-\frac{1}{2 x}\right)^{10}: \quad$ term involving x^{5}
(iii) $\left(x^{3}+\frac{1}{x}\right)^{7}: \quad$ term involving x^{9}
(iv) $\left(\frac{x}{2}-\frac{4}{x}\right)^{8}: \quad$ term involving x^{2}
(v) $\left(\frac{p^{2}}{2}+6 q^{2}\right)^{12}: \quad$ term involving q^{8}
8. Find the coefficient of
(i) x^{5} in the expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{10}$
(ii) x^{20} in the expansion of $\left(2 \mathrm{x}^{2}+\frac{1}{2 \mathrm{x}}\right)^{16}$
(iii) x^{5} in the expansion of $\left(2 x^{2}-\frac{1}{3 x}\right)^{10}$
(iv) b^{6} in the expansion of $\left(\frac{a^{2}}{2}+2 b^{2}\right)^{10}$
9. Find the constant term in the expansion of
(i) $\left(x^{2}-\frac{1}{x}\right)^{9}$
(ii) $\left(\sqrt{\mathrm{x}}+\frac{1}{3 \mathrm{x}^{2}}\right)^{10}$
10. Find the term independent of x in the expansion of the following
(i) $\left(2 x^{2}-\frac{1}{x}\right)^{12}$
(ii) $\left(2 x^{2}+\frac{1}{x}\right)^{9}$

Answers 3.1

1. (i) $x^{4}+4 x^{2}+6+\frac{4}{x^{2}}+\frac{1}{x^{4}}$
(ii) $\frac{32}{243} \mathrm{x}^{5}-\frac{40}{27} \mathrm{x}^{3}+\frac{20}{3} \mathrm{x}-\frac{15}{\mathrm{x}}+\frac{135}{8 \mathrm{x}^{3}}-\frac{243}{32 \mathrm{x}^{5}}$
(iii) $\frac{x^{4}}{16}-\frac{x^{3}}{y}+\frac{6 x^{2}}{y^{2}}-\frac{6 x}{y^{3}}+\frac{16}{y^{4}}$
(iv) $32 x^{5}-80 x^{4} y+80 x^{3} y^{2}-40 x^{2} y^{3}+10 x y^{4}-y^{5}$
(v) $128 a^{7}-448 a^{5} x+672 a^{3} x^{2}-560 a x^{3}+280 \frac{x^{4}}{a}-$ $84 \frac{x^{5}}{a^{3}}+14 \frac{x^{6}}{a^{5}}-\frac{x^{7}}{a^{7}}$
(vi) $\frac{x^{8}}{y^{8}}-8 \frac{x^{6}}{y^{6}}+28 \frac{x^{2}}{y^{2}}-56 \frac{x^{2}}{y^{2}}+70-56 \frac{y^{2}}{x^{2}}+28 \frac{y^{4}}{x^{4}}-8 \frac{y^{6}}{x^{6}}+\frac{y^{8}}{x^{8}}$
(vii) $x^{4}-4 x^{3} y^{-1}+6 x^{2} y^{-2}-4 x y^{-3}+y^{-4}$
2.

(i)
1.14
(ii) 0.88
(iii) 34.47
3.
(i) $2 x^{5}+20 x^{3} y^{2}+10 x y^{4}$
(ii) $2 x^{4}+24 x^{2}+8$
4. (i) $1-4 x+10 x^{2}-16 x^{3}+19 x^{4}-16 x^{5}+10 x^{6}-4 x^{7}+x^{8}$
(ii) $16+32 x-8 x^{2}-40 x^{3}+x^{4}+20 x^{5}-2 x^{6}-4 x^{7}+x^{8}$
5. (i) $1088640 \mathrm{x}^{8}$
(ii) $\frac{3003}{32} x^{20} y^{5}$
(iii) $\frac{101376}{x}$
(iv) $\frac{10500}{x^{3}}$
6.
(i) $1913.625 \mathrm{x}^{5}$
(ii) $-\frac{77 \mathrm{a}^{6} \mathrm{~b}^{5}}{2592}+\frac{77 \mathrm{a}^{5} \mathrm{~b}^{6}}{3888}$
(iii) $\frac{280}{x}+560 x$
7.
(i) $-1959552 \mathrm{x}^{5}$
(ii) $-252 x^{5}$
(iii) $35 x^{9}$ (iv) $-112 x^{2}$
(v) $\frac{880}{9} \mathrm{p}^{16} \mathrm{q}^{8}$
8.
(i) -1959552
(ii) 46590
(iii) 33.185
(iv) $\frac{15}{2} \mathrm{a}^{14}$
9.
(i) 84
(ii) 5
10.
(i) 7920
(ii) 672

3.7 Binomial Series

Since by the Binomial formula for positive integer n, we have
$(a+b)^{n}=a^{n}+\frac{n}{1!} a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+$ $\ldots \ldots \ldots \ldots \ldots+b^{n}$
put $\mathrm{a}=1$ and $\mathrm{b}=\mathrm{x}$, then the above form becomes:
$(1+x)^{n}=1+\frac{n}{1!} x+\frac{n(n-1)}{2!} x^{2}+\ldots \ldots . .+x^{n}$
if n is -ve integer or a fractional number (-ve or +ve), then

$$
\begin{equation*}
(1+x)^{n}=1+\frac{n}{1!} x+\frac{n(n-1)}{2!} x^{2}+. \tag{3}
\end{equation*}
$$

The series on the R.H.S of equation (3) is called binomial series.
This series is valid only when x is numerically less than unity
i.e., $|\mathrm{x}|<1$ otherwise the expression will not be valid.

Note: The first term in the expression must be unity. For example, when n is not a positive integer (negative or fraction) to expand $(a+x)^{n}$, we shall have to write it as, $(a+x)^{n}=a^{n}\left(1+\frac{x}{a}\right)^{n}$ and then apply the binomial series, where $\left|\frac{\mathrm{x}}{\mathrm{a}}\right|$ must be less than 1.

3.8 Application of the Binomial Series; Approximations:

The binomial series can be used to find expression approximately equal to the given expressions under given conditions.
Example 1: If x is very small, so that its square and higher powers can be neglected then prove that

$$
\frac{1+x}{1-x}=1+2 x
$$

Solution:

$$
\begin{aligned}
& \frac{1+\mathrm{x}}{1-\mathrm{x}} \text { this can be written as }(1+\mathrm{x})(1-\mathrm{x})^{-1} \\
&=(1+\mathrm{x})\left(1+\mathrm{x}+\mathrm{x}^{2}+\ldots \ldots \ldots . \text { higher powers of } \mathrm{x}\right) \\
&=1+\mathrm{x}+\mathrm{x}+\text { neglecting higher powers of } \mathrm{x}
\end{aligned}
$$

Example 2: Find to four places of decimal the value of (1.02) ${ }^{\mathbf{8}}$
Solution:

$$
\begin{aligned}
(1.02)^{8} & =(1+0.02)^{8} \\
& =(1+0.02)^{8} \\
& =1+\frac{8}{1}(0.02)+\frac{8.7}{2.1}(0.02)^{2}+\frac{8.7 .6}{3.2 .1}(0.02)^{3}+\ldots \\
& =1+0.16+0.0112+0.000448+\ldots \\
& =1.1716
\end{aligned}
$$

Example 3: Write and simplify the first four terms in the expansion of $(1-2 x)^{-1}$.
Solution:

$$
\begin{aligned}
& (1-2 x)^{-1} \\
& =[1+(-2 x)]^{-1}
\end{aligned}
$$

Using $\quad(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots-$

$$
\begin{aligned}
= & 1+(-1)(-2 \mathrm{x})+\frac{(-1)(-1-1)}{2!}(-2 \mathrm{x})^{2}+---- \\
& \frac{(-1)(-1-1)(-1-2)}{3!}(-2 \mathrm{x})^{3}+---- \\
= & 1+2 \mathrm{x}+\frac{(-1)(-2)}{2.1} 4 \mathrm{x}^{2}+\frac{(-1)(-2)(-3)}{3.2 .1}\left(-8 \mathrm{x}^{3}\right)+---- \\
= & 1+2 \mathrm{x}+4 \mathrm{x}^{2}+8 \mathrm{x}^{3}+---
\end{aligned}
$$

Example 4: Write the first three terms in the expansion of $(2+x)^{-3}$
Solution :

$$
\begin{aligned}
& \qquad(2+x)^{-3}=(2)^{-3}\left(1+\frac{x}{2}\right)^{-3} \\
& =(2)^{-3}\left[1+(-3)\left(\frac{x}{2}\right)+\frac{(-3)(-3-1)}{2!}\left(\frac{x}{2}\right)^{2}+\cdots\right] \\
& \quad=\frac{1}{8}\left[1-\frac{3}{2} x+3 x^{2}+---\right] \\
& \text { Root Extraction: } \\
& \text { The second application of the binomial series is that of finding the } \\
& \text { root of any quantity. }
\end{aligned}
$$

Example 5: Find square root of 24 correct to 5 places of decimals. Solution:

$$
\begin{aligned}
\sqrt{24} & =(25-1)^{1 / 2} \\
& =(25)^{1 / 2}\left(1-\frac{1}{25}\right)^{1 / 2} \\
& =5\left(1-\frac{1}{5^{2}}\right)^{1 / 2} \\
& \left.=5\left[1+\frac{1}{2}\left(-\frac{1}{5^{2}}\right)+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!}\left(-\frac{1}{5^{2}}\right)^{2}+--\right]\right] \\
& =5\left[1-\frac{1}{2.5^{2}}-\frac{1}{2^{3} \cdot 5^{4}}-\frac{1}{2^{4} .5^{6}}-----\right] \\
& =5[1-(0.02+0.0002+0.000004+---)]
\end{aligned}
$$

$$
=4.89898
$$

Example 6: evaluate $\sqrt[3]{29}$ to the nearest hundredth.
Solution :

$$
\begin{aligned}
\sqrt[3]{29} & =(27+\mathbf{2})^{1 / 3}=\left[27\left(1+\frac{\mathbf{2}}{\mathbf{2 7}}\right)\right]^{1 / 3}=3\left[\mathbf{1}+\frac{\mathbf{2}}{\mathbf{2 7}}\right]^{1 / 3}+\ldots \ldots \\
& =3\left[1+\frac{1}{3}\left(\frac{2}{27}\right)+\frac{\frac{1}{3}\left(\frac{1}{3}-1\right)}{1.2}\left(\frac{2}{27}\right)^{2}+\ldots \ldots \ldots .\right] \\
& =3\left[1+\frac{2}{81}+\frac{1}{2}\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(\frac{2}{27}\right)^{2}+\ldots \ldots \ldots .\right] \\
& =3[1+0.0247-0.0006 \ldots \ldots \ldots \ldots . .] \\
& =3[1.0212]=3.07
\end{aligned}
$$

Exercise 3.2

Q1: Expand upto four terms.
(i) $\quad(1-3 x)^{1 / 3}$
(ii) $(1-2 x)^{-3 / 4}$
(iii) $(1+x)^{-3}$
(iv) $\frac{1}{\sqrt{1+x}}$
(v) $\quad(4+x)^{1 / 2}$
(vi) $(2+x)^{-3}$

Q2: Using the binomial expansion, calculate to the nearest hundredth.
(i) $\sqrt[4]{65}$
(ii) $\sqrt{17}$
(iii) $(1.01)^{-7}$
(iv) $\sqrt{28}$
(v) $\sqrt{40}$
(vi) $\sqrt{80}$

Q3: Find the coefficient of x^{5} in the expansion of
(i) $\frac{(1+x)^{2}}{(1-x)^{2}}$
(ii) $\frac{(1+\mathrm{x})^{2}}{(1-\mathrm{x})^{3}}$

Q4: If x is nearly equal to unity, prove that

$$
\frac{\mathrm{mx}^{\mathrm{n}}-\mathrm{nx}}{\mathrm{x}^{\mathrm{n}}-\mathrm{x}^{\mathrm{m}}}=\frac{1}{1-\mathrm{x}}
$$

Answers 3.2

Q1: (i) $1-\mathrm{x}-\mathrm{x}-\frac{5}{3} \mathrm{x}^{3}+---$
(ii) $1+\frac{3}{2} x+\frac{21}{8} x^{2}+\frac{77}{16} x^{3}+\cdots-$
(iii) $\quad 1-3 x+6 x^{2}-10^{3}-\cdots$
(iv) $1-\frac{1}{2} \mathrm{x}+\frac{3}{8} \mathrm{x}^{2}-\frac{5}{16} \mathrm{x}^{3}+-\cdots$
(v) $2+\frac{x}{2}-\frac{x^{2}}{64}+\frac{x^{3}}{512}+\cdots-$
(vi) $\frac{1}{8}\left[1-\frac{3}{2} x+\frac{3}{2} x^{2}-\frac{5}{4} x^{3}\right]$
Q2:
(i) 2.84
(ii) 4.12
(iii) 0.93
(iv) 5.29
(v) 6.32
(vi) 8.94
Q3:
(i) 20
(ii) 61

Summary

Binomial Theorem

An expression consisting of two terms only is called a binomial expression. If n is a positive index, then

1. The general term in the binomial expansion is $\mathrm{T}_{\mathrm{r}-1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n-r}} \mathrm{~b}^{\mathrm{r}}$
2. The number of terms in the expansion of $(a+b)^{n}$ is $n+1$.
3. The sum of the binomial coefficients in the expansion of $(a+b)^{n}$ is 2^{n}.i.e. ${ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots . .+{ }^{n} C_{n}=2^{n}$
4. The sum of the even terms in the expansion of $(a+b)^{n}$ is equal to the sum of odd terms.
5. When n is even, then the only middle term is the $\left(\frac{\mathrm{n}+2}{2}\right)$ th term.
6. When n is odd, then there are two middle terms viz $\left(\frac{\mathrm{n}+1}{2}\right)$ th and $\left(\frac{\mathrm{n}+3}{2}\right)$ th terms.
Note: If n is not a positive index.
i.e. $(a+b)^{n}=a^{n}\left(1+\frac{n}{a}\right)^{n}$

$$
=\mathrm{a}^{\mathrm{n}}\left[1+\mathrm{n}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)+\frac{\mathrm{n}(\mathrm{n}-1)}{2!}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{2}+-------\right]
$$

1. Here n is a negative or a fraction, the quantities ${ }^{\mathrm{n}} \mathrm{C}_{1},{ }^{\mathrm{n}} \mathrm{C}_{2}$------here no meaning at all. Hence co-efficients can not be represented as ${ }^{\mathrm{n}} \mathrm{C}_{1},{ }^{\mathrm{n}} \mathrm{C}_{2}$---------.
2. The number of terms in the expansion is infinite as n is a negative or fraction.

Short Questions

Write the short answers of the following

Expand by Bi-nomial theorem Q.No. 1 to 4
Q. $1 \quad(2 x-3 y)^{4}$
Q. $2 \quad\left(\frac{x}{y}+\frac{y}{x}\right)^{4}$
Q. $3\left(\frac{x}{2}-\frac{2}{y}\right)^{4} \quad$ Q. $4 \quad\left(x+\frac{1}{x}\right)^{4}$

Q5 State Bi-nomial Theorem for positive integer n
Q. 6 State Bi-nomial Theorem for n negative and rational.

Calculate the following by Binomial Theorem up to two decimal places.
Q. 7
$(1.02)^{10}$
Q. 8
$(1.04)^{5}$
Q. 9 Find the $7^{\text {th }}$ term in the expansion of $\left(x-\frac{1}{x}\right)^{9}$
Q. 10 Find the $6^{\text {th }}$ term in the expansion of $(x+3 y)^{10}$
Q. 11 Find $5^{\text {th }}$ term in the expansion of $\left(2 x-\frac{x^{2}}{4}\right)^{7}$

Expand to three term

Q. $12(1+2 x)^{-2}$
Q. $13 \frac{1}{(1+x)^{2}}$
Q. $14 \frac{1}{\sqrt{1+x}}$
Q. $15(4-3 \mathrm{x})^{1 / 2}$
Q. 16 Using the Binomial series calculate $\sqrt[3]{65}$ to the nearest hundredth.

Which will be the middle term/terms in the expansion of
Q. $17(2 x+3)^{12}$
Q. $18\left(\mathrm{x}+\frac{3}{\mathrm{x}}\right)^{15}$?

Q19 Which term is the middle term or terms in the Binomial expansion of $(a+b)^{n}$
(i) When n is even
(ii) When n is odd

Answers

Q1. $\quad 16 x^{4}-96 x^{3} y+216 x^{2} y^{2}-216 x y^{3}+81 y^{4}$
Q. $2 \frac{x^{4}}{y^{4}}+4 \frac{x^{2}}{y^{2}}+6+4 \frac{y^{2}}{x^{2}}+4 \frac{y^{4}}{x^{4}}$
Q. $3 \frac{x^{4}}{16}-\frac{x^{3}}{y}+\frac{6 x^{2}}{y^{2}}-\frac{16 x}{y^{3}}+\frac{16}{y^{4}}$
Q. $4(x)^{4}+4 x^{2}+6+\frac{4}{x^{2}}+\frac{1}{x^{4}}$
Q. $7 \quad 1.22$
Q. $8 \quad 1.22$
Q. $9 \quad \frac{84}{x^{3}} \quad$ Q. $10 \quad 61236 x^{5} y^{5}$
Q. $11 \frac{35}{32} x^{11}$
Q. $12 \quad 1-4 \mathrm{x}+12 \mathrm{x}^{2}+$
Q. $13 \quad 1-2 x+3 x^{2}+$
Q. $141-\frac{x}{2}+\frac{3}{8} x^{2}+$
Q. $152-\frac{3 x}{4}-\frac{9 x^{2}}{64}+$.
Q. $16 \quad 4.02$
Q. $17 \quad \mathrm{~T}_{7}=\binom{12}{6}(2 \mathrm{x})^{6}(3)^{6}$
Q. $18 \quad \mathrm{~T}_{8}=\binom{15}{7}(3)^{7} \mathrm{x}$ and $\mathrm{T}_{9}=\binom{15}{8} \frac{(3)^{8}}{\mathrm{x}}$
Q. 19 (i) $\left(\frac{\mathrm{n}}{2}+1\right)$
(ii) $\left(\frac{\mathrm{n}+1}{2}\right)$ and $\left(\frac{\mathrm{n}+1}{2}+1\right)$

Objective Type Questions

Q. 1 Each questions has four possible answers. Choose the correct answer and encircle it.
_1. Third term of $(x+y)^{4}$ is:
(a) $4 x^{2} y^{2}$
(b) $4 x^{3} y$
c) $\quad 6 x^{2} y^{2}$
(d) $6 x^{3} y$
_2. The number of terms in the expansion $(a+b)^{13}$ are:
(a) 12
(b) 13
(c)
14
(d) 15
_3. The value of $\binom{n}{r}$ is:
(a) $\frac{\mathrm{n}!}{\mathrm{r}!(\mathrm{n}-\mathrm{r})!}$
(b) $\frac{n}{r(n-r)}$
(c) $\frac{\mathrm{n}!}{\mathrm{r}!(\mathrm{n}-\mathrm{r})}$
(d) $\frac{n!}{(n-r)!}$
_4. The second last term in the expansion of $(a+b)^{7}$ is:
(a) $7 a^{6} b$
(b) $7 \mathrm{ab}^{6}$
(c) $7 b^{7}$
(d) 15
_5. $\binom{6}{4}$ will have the value:
(a) 10
(b) 15
(c) 20
(d) 25
_6. $\binom{3}{0}$ will have the value:
(a) 0
(b) 1
(c) 2
(d) 3
_7. In the expansion of $(a+b)^{n}$ the general term is:
(a) $\binom{n}{r} a^{r} b^{r}$
(b) $\quad\binom{n}{r} a^{n-r} b^{r}$
(c) $\quad\binom{n}{r-1} a^{n-r+1} b^{r-1}$
(d) $\quad\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}-1} \mathrm{~b}^{\mathrm{r}-1}$
_8. In the expansion of $(a+b)^{n}$ the term $\binom{n}{r} a^{n-r} b^{r}$ will be:
(a) nth term
(b) rth term
(c) $(r+1)$ th term
(d) None of these
_-9. In the expansion of $(a+b)^{n}$ the rth term is:
(a) ${ }^{n} C_{r}{ }^{r} b^{r}$
(b) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
(c) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}+1} \mathrm{~b}^{\mathrm{r}-1}$
(d) ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}-1} \mathrm{~b}^{\mathrm{r}-1}$
_10. In the expansion of $(1+x)^{\mathrm{n}}$ the co-efficient of $3^{\text {rd }}$ term is:
(a) $\quad\binom{\mathrm{n}}{0}$
(b) $\binom{\mathrm{n}}{1}$
(c) $\quad\binom{\mathrm{n}}{2}$
(d) $\quad\binom{\mathrm{n}}{3}$
_11. In the expansion of $(a+b)^{n}$ the sum of the exponents of a and b in any term is:
(a) n
(b) $\mathrm{n}-1$
(c) $\mathrm{n}+1$
(d) None of these
_12. The middle term in the expansion of $(a+b)^{6}$ is:
(a) $15 a^{4} b^{2}$
(b) $20 \mathrm{a}^{3} \mathrm{~b}^{3}$
(c) $15 a^{2} b^{4}$
(d) $6 a b^{5}$
_13. The value of $\binom{n}{n}$ is equal to:
(a) Zero
(b) 1
(c) n
(d) $-n$
_ 14. The expansion of $(1+x)^{-1}$ is:
(a) $1-x-x^{2}-x^{3}+\ldots$
(b) $\quad 1-x+x^{2}-x^{3}+\ldots$
(c) $\quad 1-\frac{1}{1!} x-\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots$
(d) $\quad 1-\frac{1}{1!} \mathrm{x}+\frac{1}{2!} \mathrm{x}^{2}-\frac{1}{3!} \mathrm{x}^{3}+\ldots$
_15. The expansion of $(1-x)^{-1}$ is:
(a) $1+x+x^{2}+x^{3}+\ldots$
(b) $\quad 1-x+x^{2}-x^{3}+\ldots$
(c) $1+\frac{1}{1!} x-\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots$
(d) $\quad 1-\frac{1}{1!} \mathrm{x}+\frac{1}{2!} \mathrm{x}^{3}-\frac{1}{3!} \mathrm{x}^{3}+\ldots$
_16. Binomial series for $(1+x)^{n}$ is valid only when:
(a) $\mathrm{x}<1$
(b) $\mathrm{x}<-1$
(c) $\quad|\mathrm{x}|<1$
(d) None of these
_17. The value of $\binom{2 n}{n}$ is:
(a) $\frac{2 n}{n!n!}$
(b) $\frac{(2 n)!}{n!n!}$
(c) $\frac{(2 n)!}{n!}$
(d) $\frac{(2 \mathrm{n})!}{\mathrm{n}(\mathrm{n}-1!)}$
_18. The middle term of $\left(\frac{x}{y}-\frac{y}{x}\right)^{4}$ is:
(a) $\frac{4 x^{2}}{y^{2}}$
(b) 6
(c) 8
(d) $\frac{4 x}{y}$

Answers

1.	c	2.	c	3.	a	4.	b	5.	b
6.	b	7.	b	8.	c	9.	c	10.	c
11.	a	12.	b	13.	b	14.	b	15.	a
16.	b	17.	d	18.	c	19.	b	20.	b

