

Complex Numbers Operations

Department of Electrical Engineering

OUTLINE

- Complex numbers:
- Addition
- Subtraction
- Multiplication
- Division
- Conversion of complex numbers (Cartesian \& polar coordinates)
- Introduction to Matlab

DEFINITION

- A complex number is a combination of a :
- Real number
$12,4.6,3 / 4, \ldots$ Any number you can think of !
- Imaginary number

Special numbers because ... imaginary ${ }^{2} \leadsto$ negative

- The "unit" imaginary number is i, like 1 for real numbers.

$$
i=\sqrt{-1}
$$

- by simply accepting that \mathbf{i} exists we can solve things that need the square root of a negative number.

DEFINITION

- A Complex Number is a combination of a Real Number and an Imaginary Number

- Examples :

$1+\mathrm{i}$	$39+3 \mathrm{i}$	$0.8-2.2 \mathrm{i}$	$-2+\pi \mathrm{i}$	$\sqrt{ } 2+\mathrm{i} / 2$

Complex number

- So, a Complex Number has a real part and an imaginary part. But either part can be $\mathbf{0}$, so all Real Numbers and Imaginary Numbers are also Complex Numbers.

Complex Number	Real Part	Imaginary Part
$3+2 \mathrm{i}$	3	2
5	5	0
-6 i	0	-6

ADDITION OF COMPLEX NUMBERS

- To add two complex numbers we add each element separately:

$$
(a+b \mathbf{i})+(c+d \mathbf{i})=(a+c)+(b+d) \mathbf{i}
$$

- Example:

$$
(3+2 i)+(1+7 i)=(4+9 i)
$$

o Subtraction follows the same rule !

MULTIPLICATION

- Each part of the first complex number gets multiplied by each part of the second complex number

$$
(\mathrm{a}+\mathrm{b} \boldsymbol{i})(\mathrm{c}+\mathrm{d} \boldsymbol{i})=\mathrm{ac}+\mathrm{ad} \boldsymbol{i}+\mathrm{bc} \boldsymbol{i}+\mathrm{bd} \boldsymbol{i}^{2}
$$

EXAMPLE

$$
\begin{array}{r}
(3+2 \mathrm{i})(1+7 \mathrm{i}) \quad 3 \times 1+3 \times 7 \mathrm{i}+2 \mathrm{i} \times 1+2 \mathrm{i} \times 7 \mathrm{i} \\
=3+21 \mathrm{i}+2 \mathrm{i}+14 \mathrm{i}^{2} \\
=3+21 \mathrm{i}+2 \mathrm{i}-14 \\
=-11+23 \mathrm{i}
\end{array}
$$

$$
\text { (because } \mathrm{i}^{2}=-1 \text {) }
$$

DIVISION

- The trick is to multiply both top and bottom by the conjugate of the bottom.
- A conjugate is where you change the sign in the middle like this:

EXAMPLE

Example: Do this Division:

$$
\frac{2+3 i}{4-5 i}
$$

Multiply top and bottom by the conjugate of 4-5i :

$$
\frac{2+3 i}{4-5 i} \times \frac{4+5 i}{4+5 i}=\frac{8+10 \mathbf{i}+12 \mathbf{i}+15 \mathbf{i}^{2}}{16+20 \mathbf{i}-20 \mathbf{i}-25 \mathbf{i}^{2}}
$$

Now remember that $i^{2}=-1$, so:

$$
=\frac{8+10 \mathbf{i}+12 \mathbf{i}-15}{16+20 \mathbf{i}-20 \mathbf{i}+25}
$$

Add Like Terms (and notice how on the bottom 20i - $20 \mathbf{i}$ cancels out!):

$$
=\frac{-7+22 \mathbf{i}}{41}
$$

We should then put the answer back into a + bi form:

$$
=\frac{-7}{41}+\frac{22}{41} \mathbf{i}
$$

Complex PLANE

- The Real part goes left-right
- The Imaginary part goes up-down
- Example
$3+4 i$

PoLAR PLANE

- the complex number $\mathbf{3 + 4 i}$ can also be distance (5) and angle (0.927 radians).
- How to do the conversion?

CONVERSION OF COMPLEX NUMBERS

- Example: the number $\mathbf{3 + 4 i}$

We can do a Cartesian to Polar conversion:

- $r=\sqrt{ }\left(\mathbf{x}^{2}+y^{2}\right)=\sqrt{ }\left(3^{2}+4^{2}\right)=\sqrt{25}=5$
- $\boldsymbol{\theta}=\tan ^{-1}(\mathbf{y} / \mathbf{x})=\tan ^{-1}(4 / 3)=0.927$ (to 3 decimals)

We can also take Polar coordinates and convert them to Cartesian coordinates:

- $\mathbf{x}=\mathbf{r} \times \cos (\boldsymbol{\theta})=5 \times \cos (0.927)=5 \times 0.6002 \ldots=3$ (close enough)
- $\mathbf{y}=\mathbf{r} \times \sin (\boldsymbol{\theta})=5 \times \sin (0.927)=5 \times 0.7998 \ldots=4$ (close enough)

Introduction to Matlab

MATLAB

REFERENCES

- http://www.mathsisfun.com/numbers/complexnumbers.html

