

COMPLEX NUMBERS OPERATIONS

Department of Electrical Engineering

OUTLINE

- Complex numbers:
 - Addition
 - Subtraction
 - Multiplication
 - Division
- Conversion of complex numbers (Cartesian & polar coordinates)
- Introduction to Matlab

DEFINITION

• A complex number is a combination of a :

- Real number
 - 12, 4.6, ³/₄, Any number you can think of !
- Imaginary number

Special numbers because ... imaginary $^{2} \longrightarrow$ negative

• The "unit" imaginary number is i, like 1 for real numbers.

i = √-1

• by simply **accepting** that **i** exists we can solve things that need the square root of a negative number.

DEFINITION

• A Complex Number is a combination of a Real Number and an Imaginary Number

• Examples :

1 + i	39 + 3i	0.8 - 2.2i	-2 + пі	$\sqrt{2}$ + i/2
-------	---------	------------	---------	------------------

COMPLEX NUMBER

• So, a Complex Number has a real part and an imaginary part. But either part can be **0**, so all Real Numbers and Imaginary Numbers are also Complex Numbers.

Complex Number	Real Part	Imaginary Part
3 + 2i	3	2
5	5	0
-6i	0	-6

ADDITION OF COMPLEX NUMBERS

• To add two complex numbers we add each element separately:

(a+bi) + (c+di) = (a+c) + (b+d)i

• Example:

(3 + 2i) + (1 + 7i) = (4 + 9i)

• Subtraction follows the same rule !

MULTIPLICATION

• Each part of the first complex number gets multiplied by each part of the second complex number

 $(a+bi)(c+di) = ac + adi + bci + bdi^2$

DIVISION

- The trick is to **multiply both top and bottom** by the **conjugate of the bottom**.
- A <u>conjugate</u> is where you **change the sign in the middle** like this:

EXAMPLE

Example: Do this Division:

Multiply top and bottom by the conjugate of 4 - 5i :

$$\frac{2+3i}{4-5i} \times \frac{4+5i}{4+5i} = \frac{8+10i+12i+15i^2}{16+20i-20i-25i^2}$$

Now remember that
$$i^2 = -1$$
, so:

$$=\frac{8+10\mathbf{i}+12\mathbf{i}-15}{16+20\mathbf{i}-20\mathbf{i}+25}$$

Add Like Terms (and notice how on the bottom 20i - 20i cancels out!):

$$=\frac{-7+22}{41}$$

We should then put the answer back into a + bi form:

$$=\frac{-7}{41}+\frac{22}{41}$$

COMPLEX PLANE

- The Real part goes left-right
- The Imaginary part goes up-down
- Example

3 + 4i

POLAR PLANE

• the complex number **3** + 4*i* can also be distance (5) and angle (0.927 radians).

• How to do the conversion ?

• Example: the number 3 + 4i

We can do a Cartesian to Polar conversion:

- $\mathbf{r} = \sqrt{(\mathbf{x}^2 + \mathbf{y}^2)} = \sqrt{(3^2 + 4^2)} = \sqrt{25} = \mathbf{5}$
- θ = tan⁻¹ (y/x) = tan⁻¹ (4/3) = 0.927 (to 3 decimals)

We can also take Polar coordinates and convert them to Cartesian coordinates:

- x = r × cos(θ) = 5 × cos(0.927) = 5 × 0.6002... = 3 (close enough)
- y = r × sin(θ) = 5 × sin(0.927) = 5 × 0.7998... = 4 (close enough)

INTRODUCTION TO MATLAB

References

• <u>http://www.mathsisfun.com/numbers/complex-</u> <u>numbers.html</u>

