
Class: 5th Semester Computer Engg. 

SUBJECT: COMPUTER PROGRAMMING USING PYTHON 

CHAPTER – 1 (INTRODUCTION) 

 Python is a general-purpose interpreted, interactive, object-oriented, and high-level programming 

language. Python was developed by Guido van Rossum in the late eighties and early nineties at 

the National Research Institute for Mathematics and Computer Science in the Netherlands. 

Python is derived from many other languages, including C, C++, Algol-68, SmallTalk, and Unix 

shell and other scripting languages. 

Advantages of Python: Some of the key advantages of learning Python are: 

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not 

need to compile your program before executing it. This is similar to PERL and PHP. 

• Python is Interactive − You can actually sit at a Python prompt and interact with the 

interpreter directly to write your programs. 

• Python is Object-Oriented − Python supports Object-Oriented style or technique of 

programming that encapsulates code within objects. 

• Python is a Beginner's Language − Python is a great language for the beginner-level 

programmers and supports the development of a wide range of applications from simple 

text processing to WWW browsers to games. 

Characteristics of Python: 

• It supports functional and structured programming methods as well as OOP. 

• It can be used as a scripting language or can be compiled to byte-code for building large 

applications. 

• It supports automatic garbage collection. 

• It can be easily integrated with C, C++, ActiveX, CORBA, and Java. 

Python Features:  Python's features include − 

• Easy-to-learn − Python has few keywords, simple structure, and a clearly defined syntax. 

This allows the student to pick up the language quickly. 

• Easy-to-read − Python code is more clearly defined and visible to the eyes. 

• Easy-to-maintain − Python's source code is fairly easy-to-maintain. 

• A broad standard library − Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh. 

• Interactive Mode − Python has support for an interactive mode which allows interactive 

testing and debugging of snippets of code. 

• Portable − Python can run on a wide variety of hardware platforms and has the same 

interface on all platforms. 

• Extendable − You can add low-level modules to the Python interpreter. These modules 

enable programmers to add to or customize their tools to be more efficient. 

• Databases − Python provides interfaces to all major commercial databases. 



• GUI Programming − Python supports GUI applications that can be created and ported to 

many system calls, libraries and windows systems, such as Windows, Macintosh, and the 

X Window system of Unix. 

• Scalable − Python provides a better structure and support for large programs than shell 

scripting. 

 

OVERVIEW 

Getting Python: The most up-to-date and current source code, documentation, news, etc., is 

available on the official website of Python https://www.python.org/. You can download Python 

documentation from https://www.python.org/doc/.  

Installing Python: Python distribution is available for a wide variety of platforms.  

Windows Installation: Here are the steps to install Python on Windows machine. 

• Open a Web browser and go to https://www.python.org/downloads/. 

• Follow the link for the Windows installer python-XYZ.msi file where XYZ is the version 

you need to install. 

• To use this installer python-XYZ.msi, the Windows system must support Microsoft Installer 

2.0. Save the installer file to your local machine and then run it to find out if your machine 

supports MSI. 

• Run the downloaded file. This brings up the Python install wizard, which is really easy to 

use. Just accept the default settings, wait until the install is finished, and you are done. 

Setting up PATH: Programs and other executable files can be in many directories, so operating 

systems provide a search path that lists the directories that the OS searches for executables. 

The path is stored in an environment variable, which is a named string maintained by the 

operating system. This variable contains information available to the command shell and other 

programs. 

➢ To check if you have python installed on a Windows PC, search in the start bar for Python or 

run the following on the Command Line (cmd.exe): 

C:\Users\Your Name> python --version 

Running Python: There are three different ways to start Python − 

1. Interactive Interpreter: You can start Python from Unix, DOS, or any other system that provides 

you a command-line interpreter or shell window. 

Enter python at the command line. 

C:> python  

Start coding right away in the interactive interpreter. 

>>> print(“Hello, World!”) 

Which will write "Hello, World!" in the command line: 

https://www.python.org/
https://www.python.org/doc/
https://www.python.org/downloads/


2. Script from the Command-line: Python is an interpreted programming language, this means that 

as a developer you write Python (.py) files in a text editor and then put those files into the python 

interpreter to be executed. The way to run a python file is like this on the command line: 
 

C:\Users\Your Name> python helloworld.py 

Where "helloworld.py" is the name of your python file. 

Let's write our first Python file, called helloworld.py, which can be done in any text editor. 

print("Hello, World!") 

Save your file. Open your command line, navigate to the directory where you saved your file, and 

run: 

C:\Users\Your Name>python helloworld.py 

The output should read: 

Hello, World! 

Whenever you are done in the python command line, you can simply type the following to quit the 

python command line interface: 

exit() 

3. Integrated Development Environment: You can run Python from a Graphical User Interface (GUI) 

environment as well, if you have a GUI application on your system that supports Python. Some 

common IDEs are: 

PyCharm, IDLE, Atom, Spyder 

First Python Program: Let us execute programs in different modes of programming. 

1. Interactive Mode Programming 

Simply type the following command by invoking the interpreter to bring the command prompt − 

$ python 

Python 2.4.3 (#1, Nov 11 2010, 13:34:43) 

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2 

Type "help", "copyright", "credits" or "license" for more information. 

>>> 

Type the following text at the Python prompt and press the Enter − 

>>> print "Hello, Python!" 

If you are running new version of Python, then you would need to use print statement with 

parenthesis as in print ("Hello, Python!"); 

Hello, Python! 



2. Script Mode Programming 

Let us write a simple Python program using text editor in a script. Python files have extension .py. 

Type the following source code in a test.py file (simple text file)− 

print "Hello, Python!" 

We assume that you have Python interpreter set in PATH variable. Now, try to run this program 

as follows − 

$ python test.py 

This produces the following result − 

Hello, Python! 

Python Identifiers: A Python identifier is a name used to identify a variable, function, class, 

module or other object. An identifier starts with a letter A to Z or a to z or an underscore (_) 

followed by zero or more letters, underscores and digits (0 to 9). 

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a 

case sensitive programming language. Thus, Manpower and manpower are two different 

identifiers in Python. 

Here are naming conventions for Python identifiers − 

• Class names start with an uppercase letter. All other identifiers start with a lowercase letter. 

• Starting an identifier with a single leading underscore indicates that the identifier is private. 

• Starting an identifier with two leading underscores indicates a strongly private identifier. 

• If the identifier also ends with two trailing underscores, the identifier is a language-defined 

special name. 

Reserved Words: The following list shows the Python keywords. These are reserved words and 

you cannot use them as constant or variable or any other identifier names. All the Python keywords 

contain lowercase letters only. These are: 

and, assert, break, class, continue, def, del, else, elif, for, if, import, not, or, pass, print, raise, 

return, try, while, with    

Lines and Indentation: Indentation refers to the spaces at the beginning of a code line. Where in 

other programming languages the indentation in code is for readability only, the indentation in 

Python is very important. Python uses indentation to indicate a block of code. For example: 

if 5 > 2: 

  print("Five is greater than two!") 

Python will give you an error if you skip the indentation. For example: 

if 5 > 2: 

print("Five is greater than two!") 

The number of spaces is up to you, but it has to be at least one.  

You have to use the same number of spaces in the same block of code, otherwise Python will give 

you an error. For example: 



if 5 > 2: 

 print("Five is greater than two!") 

        print("Five is greater than two!") 

The number of spaces in the indentation is variable, but all statements within the block must be 

indented the same amount. For example − 

if True: 

   print "True" 

else: 

   print "False" 

However, the following block generates an error − 

if True: 

print "Answer" 

print "True" 

else: 

print "Answer" 

print "False" 

Thus, in Python all the continuous lines indented with same number of spaces would form a 

block.  

Multi-Line Statements: 

Statements in Python typically end with a new line. Python does, however, allow the use of the 

line continuation character (\) to denote that the line should continue. For example − 

total = item_one + \ 

        item_two + \ 

        item_three 

Statements contained within the [], {}, or () brackets do not need to use the line continuation 

character. For example − 

days = ['Monday', 'Tuesday', 'Wednesday', 

        'Thursday', 'Friday'] 

 

IDLE:  

It is Python’s Integrated Development and Learning Environment. It has following features: 

• coded in 100% pure Python, using the tkinter GUI toolkit 

• cross-platform: works mostly the same on Windows, Unix, and macOS 

• Python shell window (interactive interpreter) with colorizing of code input, output, and error 

messages 

• multi-window text editor with multiple undo, Python colorizing, smart indent, call tips, auto 

completion, and other features 

 

 

 

 

https://docs.python.org/3/library/tkinter.html#module-tkinter


CHAPTER – 2 (BASIC PYTHON SYNTAX) 

Quotation in Python: Python accepts single ('), double (") and triple (''' or """) quotes to denote 

string literals, as long as the same type of quote starts and ends the string. 

The triple quotes are used to span the string across multiple lines. For example, all the following 

are legal − 

word = 'word' 

sentence = "This is a sentence." 

paragraph = """This is a paragraph. It is 

made up of multiple lines and sentences.""" 

Comments in Python: A hash sign (#) that is not inside a string literal begins a comment. All 

characters after the # and up to the end of the physical line are part of the comment and the Python 

interpreter ignores them. 

# First comment 

print "Hello, Python!" # second comment 

This produces the following result − 

Hello, Python! 

You can type a comment on the same line after a statement or expression − 

name = "Madisetti" # This is again comment 

Comments does not have to be text to explain the code, it can also be used to prevent Python from 

executing code. 

You can comment multiple lines as follows − 

# This is a comment. 

# This is a comment, too. 

# This is a comment, too. 

# I said that already. 

Following triple-quoted string is also ignored by Python interpreter and can be used as multiline 

comments: 

''' 

This is a multiline 

comment. 

''' 

Multiple Statements on a Single Line: The semicolon (;) allows multiple statements on the single 

line given that neither statement starts a new code block. Here is a sample snip using the semicolon 

import sys;  x = 'foo';   sys.stdout.write(x + '\n') 

Multiple Statement Groups as Suites: A group of individual statements, which make a single 

code block are called suites in Python. Compound or complex statements, such as if, while, def, 

and class require a header line and a suite. 

Header lines begin the statement (with the keyword) and terminate with a colon (:) and are 

followed by one or more lines which make up the suite. For example − 



if expression :  

   suite 

elif expression :  

   suite  

else :  

   suite 

 

Variable Names: Variables are nothing but reserved memory locations to store values. This means 

that when you create a variable you reserve some space in memory. 

Based on the data type of a variable, the interpreter allocates memory and decides what can be 

stored in the reserved memory. Therefore, by assigning different data types to variables, you can 

store integers, decimals or characters in these variables. 

Assigning Values to Variables: Python variables do not need explicit declaration to reserve 

memory space. The declaration happens automatically when you assign a value to a variable. The 

equal sign (=) is used to assign values to variables. 

The operand to the left of the = operator is the name of the variable and the operand to the right of 

the = operator is the value stored in the variable. For example −Live Demo 

counter = 100          # An integer assignment 

miles   = 1000.0       # A floating point 

name    = "John"       # A string 

print counter 

print miles 

print name 

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and name variables, 

respectively. This produces the following result − 

100 

1000.0 

John 

A variable can have a short name (like x and y) or a more descriptive name (age, carname, 

total_volume).  

Rules for Python variables: 
 

• A variable name must start with a letter or the underscore character 

• A variable name cannot start with a number 

• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, _ ) 

• Variable names are case-sensitive (age, Age and AGE are three different variables) 

#Legal variable names: 

myvar = "John";   my_var = "John";   _my_var = "John";  myVar = "John";  MYVAR = "John"; 

myvar2 = "John" 

 

#Illegal variable names: 

2myvar = "John";  my-var = "John";  my var = "John" 

Assign Value to Multiple Variables: Python allows you to assign values to multiple variables in 

one line. e.g. 

http://tpcg.io/Eh9FoM


x, y, z = "Orange", "Banana", "Cherry" 

print(x) 

print(y) 

print(z) 

And you can assign the same value to multiple variables in one line.e.g. 

x = y = z = "Orange" 

print(x) 

print(y) 

print(z) 

Output Variables: The Python print statement is often used to output variables. To combine both 

text and a variable, Python uses the + character: 

x = "awesome" 

print("Python is " + x) 

You can also use the + character to add a variable to another variable: 

x = "Python is " 

y = "awesome" 

z =  x + y 

print(z) 

For numbers, the + character works as a mathematical operator: 

x = 5 

y = 10 

print(x + y) 

If you try to combine a string and a number, Python will give you an error: 

x = 5 

y = "John" 

print(x + y) 

Global Variables: Variables that are created outside of a function (as in all of the examples above) 

are known as global variables. Global variables can be used by everyone, both inside of functions 

and outside. 

• Create a variable outside of a function, and use it inside the function 

x = "awesome" 

def myfunc(): 

  print("Python is " + x) 

myfunc()               (Result – Python is awesome) 

If you create a variable with the same name inside a function, this variable will be local, and can 

only be used inside the function. The global variable with the same name will remain as it was, 

global and with the original value. e.g. 



• Create a variable inside a function, with the same name as the global variable 

x = "awesome" 

def myfunc(): 

  x = "fantastic" 

  print("Python is " + x) 

myfunc() 

print("Python is " + x)           (Result – Python is fantastic 

                                 Python is awesome)  

The global Keyword: Normally, when you create a variable inside a function, that variable is 

local, and can only be used inside that function. To create a global variable inside a function, you 

can use the global keyword. 

def myfunc(): 

  global x 

  x = "fantastic" 

myfunc() 

print("Python is " + x)   (Result – Python is fantastic) 

Also, use the global keyword if you want to change a global variable inside a function. To change 

the value of a global variable inside a function, refer to the variable by using the global keyword: 

x = "awesome" 

def myfunc(): 

  global x 

  x = "fantastic" 

myfunc() 

print("Python is " + x)   (Result – Python is fantastic) 

Built-in Data Types: Variables can store data of different types, and different types can do 

different things. Python has the following data types built-in by default, in these categories: 

Text Type: Str 

Numeric Types: int, float, complex 

Sequence Types: list, tuple, range 

Mapping Type: Dict 

Set Types: set, frozenset 

Boolean Type: Bool 

Binary Types: bytes, bytearray, memoryview 

Getting the Data Type: You can get the data type of any object by using the type() function: 

Print the data type of the variable x: 

x = 5 

print(type(x))  (Result – class ‘int’) 

 

Setting the Data Type: In Python, the data type is set when you assign a value to a variable: 



Example Data Type 
 

x = "Hello World" str 
 

x = 20 int 
 

x = 20.5 float 
 

x = 1j complex 
 

x = ["apple", "banana", "cherry"] list 
 

x = ("apple", "banana", "cherry") tuple 
 

x = range(6) range 
 

x = {"name" : "John", "age" : 36} dict 
 

x = {"apple", "banana", "cherry"} set 
 

x = frozenset({"apple", "banana", "cherry"}) frozenset 
 

x = True bool 
 

x = b"Hello" bytes 
 

x = bytearray(5) bytearray 
 

x = memoryview(bytes(5)) memoryview 
 

Python Casting: There may be times when you want to specify a type on to a variable. This can be 

done with casting. Python is an object-orientated language, and as such it uses classes to define 

data types, including its primitive types. Casting in python is therefore done using constructor 

functions: 

• int() - constructs an integer number from an integer literal, a float literal (by rounding down 

to the previous whole number), or a string literal (providing the string represents a whole 

number) 

• float() - constructs a float number from an integer literal, a float literal or a string literal 

(providing the string represents a float or an integer) 

• str() - constructs a string from a wide variety of data types, including strings, integer literals 

and float literals 

Integers:  

x = int(1)   # x will be 1 

y = int(2.8) # y will be 2 

z = int("3") # z will be 3 

 

Floats: 

x = float(1)     # x will be 1.0 

y = float(2.8)   # y will be 2.8 

z = float("3")   # z will be 3.0 



w = float("4.2") # w will be 4.2 

 

Strings: 

x = str("s1") # x will be 's1' 

y = str(2)    # y will be '2' 

z = str(3.0)  # z will be '3.0' 

Standard Data Types: The data stored in memory can be of many types. For example, a person's 

age is stored as a numeric value and his or her address is stored as alphanumeric characters. Python 

has various standard data types that are used to define the operations possible on them and the 

storage method for each of them. Python has five standard data types − 

• Numbers 

• String 

• List 

• Tuple 

• Dictionary 

a) Python Numbers: Number data types store numeric values. Number objects are created 

when you assign a value to them. For example -  

var1 = 1 

var2 = 10 

You can delete a single object or multiple objects by using the del statement. For example − 

del var 

del var_a, var_b 

Python supports four different numerical types − 

• int (signed integers) 

• long (long integers, they can also be represented in octal and hexadecimal) 

• float (floating point real values) 

• complex (complex numbers) 

Examples: Here are some examples of numbers − 

Int Long float complex 

10 51924361L 0.0 3.14j 

-786 0122L -21.9 9.322e-36j 

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j 

-0490 535633629843L -90. -.6545+0J 

-0x260 -052318172735L -32.54e100 3e+26J 

• Python allows you to use a lowercase l with long, but it is recommended that you use only 

an uppercase L to avoid confusion with the number 1. Python displays long integers with 

an uppercase L. 



• A complex number consists of an ordered pair of real floating-point numbers denoted by x 

+ yj, where x and y are the real numbers and j is the imaginary unit. 

b) Python Strings: Strings in Python are identified as a contiguous set of characters 

represented in the quotation marks. Python allows for either pairs of single or double 

quotes. Subsets of strings can be taken using the slice operator ([ ] and [:]) with indexes 

starting at 0 in the beginning of the string and working their way from -1 at the end. The 

plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition 

operator. For example −Live Demo 

str = 'Hello World!' 

 

print str          # Prints complete string 

print str[0]       # Prints first character of the string 

print str[2:5]     # Prints characters starting from 3rd to 5th 

print str[2:]      # Prints string starting from 3rd character 

print str * 2      # Prints string two times 

print str + "TEST" # Prints concatenated string 

This will produce the following result − 

Hello World! 

H 

llo 

llo World! 

Hello World!Hello World! 

Hello World!TEST 

c) Python Lists: Lists are the most versatile of Python's compound data types. A list contains 

items separated by commas and enclosed within square brackets ([]). To some extent, lists 

are similar to arrays in C. One difference between them is that all the items belonging to a 

list can be of different data type. 

The values stored in a list can be accessed using the slice operator ([ ] and [:]) with indexes 

starting at 0 in the beginning of the list and working their way to end -1. The plus (+) sign is the 

list concatenation operator, and the asterisk (*) is the repetition operator. For example − 

list = [ 'abcd', 786, 2.23, 'john', 70.2 ] 

tinylist = [123, 'john'] 

 

print list          # Prints complete list 

print list[0]       # Prints first element of the list 

print list[1:3]     # Prints elements starting from 2nd till 3rd  

print list[2:]      # Prints elements starting from 3rd element 

print tinylist * 2  # Prints list two times 

print list + tinylist # Prints concatenated lists 

This produce the following result − 

['abcd', 786, 2.23, 'john', 70.2] 

abcd 

[786, 2.23] 

[2.23, 'john', 70.2] 

[123, 'john', 123, 'john'] 

['abcd', 786, 2.23, 'john', 70.2, 123, 'john'] 

http://tpcg.io/PsSj6c


d) Python Tuples: A tuple is another sequence data type that is similar to the list. A tuple 

consists of a number of values separated by commas. Unlike lists, however, tuples are 

enclosed within parentheses. 

The main differences between lists and tuples are: Lists are enclosed in brackets ( [ ] ) and their 

elements and size can be changed, while tuples are enclosed in parentheses ( ( ) ) and cannot be 

updated. Tuples can be thought of as read-only lists. For example −Live Demo 

tuple = ( 'abcd', 786 , 2.23, 'john', 70.2 ) 

tinytuple = (123, 'john') 

 

print tuple               # Prints the complete tuple 

print tuple[0]            # Prints first element of the tuple 

print tuple[1:3]          # Prints elements of the tuple starting from 2nd till 3rd  

print tuple[2:]           # Prints elements of the tuple starting from 3rd element 

print tinytuple * 2       # Prints the contents of the tuple twice 

print tuple + tinytuple   # Prints concatenated tuples 

This produce the following result − 

('abcd', 786, 2.23, 'john', 70.2) 

abcd 

(786, 2.23) 

(2.23, 'john', 70.2) 

(123, 'john', 123, 'john') 

('abcd', 786, 2.23, 'john', 70.2, 123, 'john') 

The following code is invalid with tuple, because we attempted to update a tuple, which is 

not allowed. Similar case is possible with lists − 

tuple = ( 'abcd', 786 , 2.23, 'john', 70.2  ) 

list = [ 'abcd', 786 , 2.23, 'john', 70.2  ] 

tuple[2] = 1000    # Invalid syntax with tuple 

list[2] = 1000     # Valid syntax with list 

e) Python Dictionary: Python's dictionaries are kind of hash table type. They work like 

associative arrays or hashes found in Perl and consist of key-value pairs. A dictionary key 

can be almost any Python type, but are usually numbers or strings. Values, on the other 

hand, can be any arbitrary Python object. 

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using 

square braces ([]). For example − 

dict = {} 

dict['one'] = "This is one" 

dict[2]     = "This is two" 

 

tinydict = {'name': 'john', 'code': 6734, 'dept': 'sales'} 

 

print dict['one']       # Prints value for 'one' key 

print dict[2]           # Prints value for 2 key 

print tinydict          # Prints complete dictionary 

print tinydict.keys()   # Prints all the keys 

print tinydict.values() # Prints all the values 

 

http://tpcg.io/XYBk9k


This produce the following result − 

This is one 

This is two 

{'dept': 'sales', 'code': 6734, 'name': 'john'} 

['dept', 'code', 'name'] 

['sales', 6734, 'john'] 

Dictionaries have no concept of order among elements. It is incorrect to say that the elements 

are "out of order"; they are simply unordered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-3 (LANGUAGE COMPONENTS) 

Types of Operator: Python language supports the following types of operators: 

• Arithmetic Operators 

• Comparison (Relational) Operators 

• Assignment Operators 

• Logical Operators 

• Bitwise Operators 

• Membership Operators 

• Identity Operators 

a) Python Arithmetic Operators: Assume variable a holds 10 and variable b holds 20, then:  

Operator Description Example 

+ Addition Adds values on either side of the operator. a + b = 30 

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10 

* Multiplication Multiplies values on either side of the operator a * b = 200 

/ Division Divides left hand operand by right hand operand b / a = 2 

% Modulus Divides left hand operand by right hand operand and returns remainder b % a = 0 

** Exponent Performs exponential (power) calculation on operators a**b =10 to the 

power 20 

b) Python Comparison Operators: These operators compare the values on either sides of them 

and decide the relation among them. They are also called Relational operators. Assume 

variable a holds 10 and variable b holds 20 − 

Operator Description Example 

== If the values of two operands are equal, then the condition becomes true. (a == b) is not true. 

!= If values of two operands are not equal, then condition becomes true. (a != b) is true. 

<> If values of two operands are not equal, then condition becomes true. (a <> b) is true. This is 

similar to != operator. 

> If the value of left operand is greater than the value of right operand, then 

condition becomes true. 

(a > b) is not true. 



< If the value of left operand is less than the value of right operand, then 

condition becomes true. 

(a < b) is true. 

>= If the value of left operand is greater than or equal to the value of right 

operand, then condition becomes true. 

(a >= b) is not true. 

<= If the value of left operand is less than or equal to the value of right operand, 

then condition becomes true. 

(a <= b) is true. 

c) Python Assignment Operators: Assume variable a holds 10 and variable b holds 20, then:  

Operator Description Example 

= Assigns values from right side operands to left side operand c = a + b assigns value of a 

+ b into c 

+= Add AND It adds right operand to the left operand and assign the result to 

left operand 

c += a is equivalent to c = 

c + a 

-= Subtract AND It subtracts right operand from the left operand and assign the 

result to left operand 

c -= a is equivalent to c = c 

- a 

*= Multiply AND It multiplies right operand with the left operand and assign the 

result to left operand 

c *= a is equivalent to c = 

c * a 

/= Divide AND It divides left operand with the right operand and assign the result 

to left operand 

c /= a is equivalent to c = c 

/ a 

%= Modulus AND It takes modulus using two operands and assign the result to left 

operand 

c %= a is equivalent to c = 

c % a 

**= Exponent AND Performs exponential (power) calculation on operators and assign 

value to the left operand 

c **= a is equivalent to c = 

c ** a 

d) Python Bitwise Operators: Bitwise operator works on bits and performs bit by bit operation. 

Assume if a = 60; and b = 13; Now in the binary format their values will be 0011 1100 and 

0000 1101 respectively. Following table lists out the bitwise operators supported by Python 

language with an example each in those, we use the above two variables (a and b) as operands: 

a = 0011 1100 

b = 0000 1101 

----------------- 

a&b = 0000 1100 

a|b = 0011 1101 

a^b = 0011 0001 

~a  = 1100 0011 

There are following Bitwise operators supported by Python language 



Operator Description Example 

& Binary 

AND 

Operator copies a bit to the result if it exists in both 

operands 
(a & b) (means 0000 1100) 

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61 (means 0011 1101) 

^ Binary 

XOR 

It copies the bit if it is set in one operand but not both. (a ^ b) = 49 (means 0011 0001) 

~ Binary 

Ones 

Complement 

It is unary and has the effect of 'flipping' bits. 
(~a ) = -61 (means 1100 0011 in 2's 

complement form due to a signed binary 

number. 

<< Binary 

Left Shift 

The left operands value is moved left by the number of 

bits specified by the right operand. 
a << 2 = 240 (means 1111 0000) 

>> Binary 

Right Shift 

The left operands value is moved right by the number 

of bits specified by the right operand. 
a >> 2 = 15 (means 0000 1111) 

e) Python Logical Operators: There are following logical operators supported by Python 

language. Assume variable a holds 10 and variable b holds 20 then 

Operator Description Example 

and Logical AND If both the operands are true then condition becomes true. (a and b) is true. 

or Logical OR If any of the two operands are non-zero then condition becomes true. (a or b) is true. 

not Logical NOT Used to reverse the logical state of its operand. Not(a and b) is false. 

f) Python Membership Operators: Python’s membership operators test for membership in a 

sequence, such as strings, lists, or tuples. There are two membership operators as explained 

below: 

Operator Description Example 

In Evaluates to true if it finds a variable in the specified sequence 

and false otherwise. 

x in y, here in results in a 1 if x is a 

member of sequence y. 

not in Evaluates to true if it does not finds a variable in the specified 

sequence and false otherwise. 

x not in y, here not in results in a 1 

if x is not a member of sequence y. 

g) Python Identity Operators: Identity operators compare the memory locations of two objects. 

There are two Identity operators explained below − 



Operator Description Example 

is Evaluates to true if the variables on either side of the 

operator point to the same object and false otherwise. 

x is y, here is results in 1 if id(x) equals 

id(y). 

is not Evaluates to false if the variables on either side of the 

operator point to the same object and true otherwise. 

x is not y, here is not results in 1 if id(x) 

is not equal to id(y). 

 

Decision Making Statements: Decision making is anticipation of conditions occurring while 

execution of the program and specifying actions taken according to the conditions. 

Decision structures evaluate multiple expressions which produce TRUE or FALSE as outcome. 

You need to determine which action to take and which statements to execute if outcome is TRUE 

or FALSE otherwise. 

Following is the general form of a typical decision making structure found in most of the 

programming languages − 

                                         

Python supports the usual logical conditions from mathematics: 

• Equals: a == b 

• Not Equals: a != b 

• Less than: a < b 

• Less than or equal to: a <= b 

• Greater than: a > b 

• Greater than or equal to: a >= b 

An "if statement" is written by using the if keyword. Example is: 

a = 33 

b = 200 

if b > a: 

  print("b is greater than a") 



In this example we use two variables, a and b, which are used as part of the if statement to test 

whether b is greater than a. As a is 33, and b is 200, we know that 200 is greater than 33, and so we 

print to screen that "b is greater than a". 

Indentation: Python relies on indentation (whitespace at the beginning of a line) to define scope in 

the code. Other programming languages often use curly-brackets for this purpose. 

Example – If statement without indentation (will raise an error) 

a = 33 

b = 200 

if b > a: 

print("b is greater than a") # you will get an error 

Elif: The elif keyword is python’s way of saying "if the previous conditions were not true, then try 

this condition". 

a = 33 

b = 33 

if b > a: 

  print("b is greater than a") 

elif a == b: 

  print("a and b are equal") 

 

In this example a is equal to b, so the first condition is not true, but the elif condition is true, so we 

print to screen that "a and b are equal". 

Else: The else keyword catches anything which isn't caught by the preceding conditions. 

a = 200 

b = 33 

if b > a: 

  print("b is greater than a") 

elif a == b: 

  print("a and b are equal") 

else: 

  print("a is greater than b") 

 

In this example a is greater than b, so the first condition is not true, also the elif condition is not 

true, so we go to the else condition and print to screen that "a is greater than b". 

You can also have an else without the elif: 

a = 200 

b = 33 

if b > a: 

  print("b is greater than a") 

else: 

  print("b is not greater than a") 

 

Short Hand If: If you have only one statement to execute, you can put it on the same line as the  if 

statement. 

if a > b: print("a is greater than b") 

Short Hand If ... Else: If you have only one statement to execute, one for if, and one for else, you 

can put it all on the same line: 



a = 2 

b = 330 

print("A") if a > b else print("B") 

You can also have multiple else statements on the same line. This technique is known as Ternary 

Operators or Conditional Expression. Example - One line if else statement, with 3 conditions: 

a = 330 

b = 330 

print("A") if a > b else print("=") if a == b else print("B") 

And: The and keyword is a logical operator, and is used to combine conditional statements: 

Example – Test if a is greater than b, AND if c is greater than a: 

a = 200 

b = 33 

c = 500 

if a > b and c > a: 

  print("Both conditions are True") 

 

Or: The or keyword is a logical operator, and is used to combine conditional statements: 

Example – Test is a is greater than b, OR if a is greater than c: 

a = 200 

b = 33 

c = 500 

if a > b or a > c: 

  print("At least one of the conditions is True") 

 

Nested If: You can have if statements inside if statements, this is called nested if statements. 

x = 41 

if x > 10: 

  print("Above ten,") 

  if x > 20: 

    print("and also above 20!") 

  else: 

    print("but not above 20.") 

The pass Statement: if statements cannot be empty, but if you for some reason have 

an if statement with no content, put in the pass statement to avoid getting an error. 

a = 33 

b = 200 

if b > a: 

  pass 

WHILE LOOP 

In general, statements are executed sequentially: The first statement in a function is executed first, 

followed by the second, and so on. There may be a situation when you need to execute a block of 

code several number of times. A loop statement allows us to execute a statement or group of 

statements multiple times. The following diagram illustrates a loop statement – 

 

 



 

                                           

Python programming language provides various loops to handle looping requirements. 

A while loop statement in Python programming language repeatedly executes a target statement 

as long as a given condition is true. The syntax of a while loop in Python programming language 

is − 

while expression: 

   statement(s) 

Here, statement(s) may be a single statement or a block of statements. The condition may be any 

expression, and true is any non-zero value. The loop iterates while the condition is true. When the 

condition becomes false, program control passes to the line immediately following the loop. 

 

                                                  

In Python, all the statements indented by the same number of character spaces after a 

programming construct are considered to be part of a single block of code. Python uses 

indentation as its method of grouping statements. 

count = 0 

while (count < 4): 

   print 'The count is:', count 

   count = count + 1 

 

print "Good bye!" 



When the above code is executed, it produces the following result − 

The count is: 0 

The count is: 1 

The count is: 2 

The count is: 3 

Good bye! 

The block here, consisting of the print and increment statements, is executed repeatedly until 

count is no longer less than 4. With each iteration, the current value of the index count is 

displayed and then increased by 1. 

The Infinite Loop: A loop becomes infinite loop if a condition never becomes FALSE. You must 

use caution when using while loops because of the possibility that this condition never resolves to a 

FALSE value. This results in a loop that never ends. Such a loop is called an infinite loop. 

An infinite loop might be useful in client/server programming where the server needs to run 

continuously so that client programs can communicate with it as and when required. 

var = 1 

while var == 1 :  # This constructs an infinite loop 

   num = raw_input("Enter a number  :") 

   print "You entered: ", num 

print "Good bye!" 

When the above code is executed, it produces the following result − 

Enter a number  :20 

You entered:  20 

Enter a number  :3 

You entered:  3 

Enter a number between :Traceback (most recent call last): 

   File "test.py", line 5, in <module> 

      num = raw_input("Enter a number :") 

KeyboardInterrupt 

Above example goes in an infinite loop and you need to use CTRL+C to exit the program. 

Using else Statement with While Loop: Python supports to have an else statement associated with 

a loop statement. 

• If the else statement is used with a while loop, the else statement is executed when the 

condition becomes false. 

The following example illustrates the combination of an else statement with a while statement that 

prints a number as long as it is less than 3, otherwise else statement gets executed.emo 

count = 0 

while count < 3: 

   print count, " is  less than 3" 

   count = count + 1 

else: 

   print count, " is not less than 3" 

When the above code is executed, it produces the following result − 

0 is less than 3 

1 is less than 3 



2 is less than 3 

3 is not less than 3 

Single Statement Suites: Similar to the if statement syntax, if your while clause consists only of a 

single statement, it may be placed on the same line as the while header. Here is the syntax and 

example of a one-line while clause − 

flag = 1 

while (flag): print 'Given flag is really true!' 

print "Good bye!" 

It is better not try above example because it goes into infinite loop and you need to press 

CTRL+C keys to exit. 

Nested while loop: The syntax for a nested while loop statement in Python programming 

language is as follows − 

while expression: 

   while expression: 

      statement(s) 

   statement(s) 

A final note on loop nesting is that you can put any type of loop inside of any other type of loop. 

For example a for loop can be inside a while loop or vice versa. 

Example: Following program uses a nested for loop to find the prime numbers from 2 to 20  

i = 2 

while(i < 20): 

   j = 2 

   while(j <= (i/j)): 

      if not(i%j): break 

      j = j + 1 

   if (j > i/j) : print i, " is prime" 

   i = i + 1 

print "Good bye!" 

When the above code is executed, it produces following result − 

2 is prime;  3 is prime;  5 is prime;  7 is prime;  11 is prime;  13 is prime; 17 is prime; 19 is prime 

Good bye! 

 

FOR LOOP: It has the ability to iterate over the items of any sequence, such as a list or a string. 

Syntax:    

for iterating_var in sequence: 

   statements(s) 

If a sequence contains an expression list, it is evaluated first. Then, the first item in the sequence 

is assigned to the iterating variable iterating_var. Next, the statements block is executed. Each 

item in the list is assigned to iterating_var, and the statement(s) block is executed until the entire 

sequence is exhausted. 

 

 



Flow Diagram: 

                                      

for letter in 'Python':     # First Example 

   print 'Current Letter :', letter 

fruits = ['banana', 'apple',  'mango'] 

for fruit in fruits:        # Second Example 

   print 'Current fruit :', fruit 

 

print "Good bye!" 

When the above code is executed, it produces the following result − 

Current Letter : P;  Current Letter : y;  Current Letter : t;  Current Letter : h;  Current Letter : o 

Current Letter : n 

Current fruit : banana;  Current fruit : apple;  Current fruit : mango 

Good bye! 

Iterating by Sequence Index: An alternative way of iterating through each item is by index offset 

into the sequence itself. Following is a simple example −Live Demo 

fruits = ['banana', 'apple',  'mango'] 

for index in range(len(fruits)): 

   print 'Current fruit :', fruits[index] 

print "Good bye!" 

When the above code is executed, it produces the following result − 

Current fruit : banana 

Current fruit : apple 

Current fruit : mango 

Good bye! 

Here, we took the assistance of the len() built-in function, which provides the total number of 

elements in the tuple as well as the range() built-in function to give us the actual sequence to 

iterate over. 

Using else Statement with For Loop: Python supports to have an else statement associated with a 

loop statement 

http://tpcg.io/73ehSd


• If the else statement is used with a for loop, the else statement is executed when the loop 

has exhausted iterating the list. 

The following example illustrates the combination of an else statement with a for statement that 

searches for prime numbers from 10 through 17. 

for num in range(10,17):     #to iterate between 10 to 17 

   for i in range(2,num):    #to iterate on the factors of the number 

      if num%i == 0:         #to determine the first factor 

         j=num/i             #to calculate the second factor 

         print '%d equals %d * %d' % (num,i,j) 

         break #to move to the next number, the #first FOR 

   else:                  # else part of the loop 

      print num, 'is a prime number' 

  break 

When the above code is executed, it produces the following result − 

10 equals 2 * 5;  11 is a prime number;  12 equals 2 * 6;  13 is a prime number 

14 equals 2 * 7;  15 equals 3 * 5;  16 equals 2 * 8;  17 is a prime number 

The range() Function: To loop through a set of code a specified number of times, we can use 

the range() function, The range() function returns a sequence of numbers, starting from 0 by 

default, and increments by 1 (by default), and ends at a specified number. 

Example: Using the range() function 

 

for x in range(6): 

  print(x) 

Output is: 0  1  2  3  4  5 

 

Note that range(6) is not the values of 0 to 6, but the values 0 to 5 

The range() function defaults to 0 as a starting value, however it is possible to specify the starting 

value by adding a parameter: range(2, 6), which means values from 2 to 6 (but not including 6): 

Example: Using the start parameter: 

for x in range(2, 6): 

  print(x) 

Output is: 2  3  4  5  

The range() function defaults to increment the sequence by 1, however it is possible to specify the 

increment value by adding a third parameter: range(2, 30, 3): 

Example: Increment the sequence with 3 (default is 1): 

for x in range(2, 20, 3): 

  print(x) 

Output is: 2  5  8  11  14  17     

Else in For Loop: The else keyword in a for loop specifies a block of code to be executed when 

the loop is finished: 

Example – Print all numbers from 0 to 3, and print a message when the loop has ended: 

for x in range(4): 

  print(x) 



else: 

  print("Finally finished!") 

Output is: 0  1  2  3  Finally finished!  

Nested Loops: A nested loop is a loop inside a loop. The "inner loop" will be executed one time 

for each iteration of the "outer loop": 

Example: Print each adjective for every fruit: 

adj = ["red", "big"] 

fruits = ["apple", "banana"] 

 

for x in adj: 

  for y in fruits: 

    print(x, y) 

Output is:  

red apple;  red banana;  big apple;  big banana 

 

Break Statement: With the break statement we can stop the loop even if the while condition is 

true: Example – Exit the loop when I is 3: 

i = 1 

while i < 6: 

  print(i) 

  if i == 3: 

    break 

  i += 1 

Output is: 1   2 3 

It terminates the current loop and resumes execution at the next statement, just like the traditional 

break statement in C. 

The most common use for break is when some external condition is triggered requiring a hasty 

exit from a loop. The break statement can be used in both while and for loops. 

If you are using nested loops, the break statement stops the execution of the innermost loop and 

start executing the next line of code after the block. 

Flow Diagram: 

 



 

for letter in 'Python':     # First Example 

   if letter == 'h': 

      break 

   print 'Current Letter :', letter 

var = 10                    # Second Example 

while var > 0:               

   print 'Current variable value :', var 

   var = var -1 

   if var == 5: 

      break 

 

print "Good bye!" 

When the above code is executed, it produces the following result − 

Current Letter : P;  Current Letter : y;  Current Letter : t 

Current variable value : 10;  Current variable value : 9;  Current variable value : 8 

Current variable value : 7;  Current variable value : 6 

Good bye! 

Continue Statement: With the continue statement we can stop the current iteration, and continue 

with the next. Example – Continue to the next iteration if I is 3:  

i = 0 

while i < 6: 

  i += 1 

  if i == 3: 

    continue 

  print(i) 

Output is:  # Note that number 3 is missing in the result 

1 2 4 5 6 

It returns the control to the beginning of the while loop.. The continue statement rejects all the 

remaining statements in the current iteration of the loop and moves the control back to the top of 

the loop. The continue statement can be used in both while and for loops. 

Flow Diagram 

 

 



for letter in 'Python':     # First Example 

   if letter == 'h': 

      continue 

   print 'Current Letter :', letter 

var = 10                    # Second Example 

while var > 0:               

   var = var -1 

   if var == 5: 

      continue 

   print 'Current variable value :', var 

print "Good bye!" 

When the above code is executed, it produces the following result − 

Current Letter : P;  Current Letter : y;  Current Letter : t;  Current Letter : o;  Current Letter : n 

Current variable value : 9;  Current variable value : 8;  Current variable value : 7;  Current variable 

value : 6;  Current variable value : 4;  Current variable value : 3;  Current variable value : 2;  

Current variable value : 1;  Current variable value : 0 

Good bye! 

 

Pass Statement: It is used when a statement is required syntactically but you do not want any 

command or code to execute. The pass statement is a null operation; nothing happens when it 

executes. Example:  

for letter in 'Python':  

   if letter == 'h': 

      pass 

      print 'This is pass block' 

   print 'Current Letter :', letter 

print "Good bye!" 

When the above code is executed, it produces following result − 

Current Letter : P;  Current Letter : y;  Current Letter : t;  This is pass block 

Current Letter : h;  Current Letter : o;  Current Letter : n;  Good bye! 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-4 (COLLECTIONS) 

Python Collections (Arrays): There are 4 collection data types in the Python programming 

language: 

• List is a collection which is ordered and changeable. Allows duplicate members. 

• Tuple is a collection which is ordered and unchangeable. Allows duplicate members. 

• Set is a collection which is unordered and unindexed. No duplicate members. 

• Dictionary is a collection which is unordered and changeable. No duplicate members. 

When choosing a collection type, it is useful to understand the properties of that type. Choosing the 

right type for a particular data set could mean retention of meaning, and, it could mean an increase 

in efficiency or security. 

LIST: Lists are used to store multiple items in a single variable. Lists are created using square 

brackets: 

Example: Create a List 

 

thislist = ["apple", "banana", "cherry"] 

print(thislist) 

 

Result: [‘apple’, ‘banana’, ‘cherry’] 

 

a) List Items: List items are ordered, changeable, and allow duplicate values. List items are 

indexed, the first item has index [0], the second item has index [1] etc. 

b) Ordered: When we say that lists are ordered, it means that the items have a defined order, and 

that order will not change.  

If you add new items to a list, the new items will be placed at the end of the list. 

c) Changeable: The list is changeable, meaning that we can change, add, and remove items in a list 

after it has been created. 

d) Allow Duplicates: Since lists are indexed, lists can have items with the same value. 

Example: Lists allow duplicate values. 

thislist = ["apple", "banana", "cherry", "apple", "cherry"] 

print(thislist) 

 

Result: [‘apple’, ‘banana’, ‘cherry’, ‘apple’, ‘cherry’]  

 

1. List Length: To determine how many items a list has, use the len() function. 

Example: Print the number of items in the list. 

thislist = ["apple", "banana", "cherry"] 

print(len(thislist)) 

Result: 3 

 

2. List Items - Data Types: List items can be of any data type. 

Example: String, int and boolean data types 

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp


list1 = ["apple", "banana", "cherry"] 

list2 = [1, 5, 7, 9, 3] 

list3 = [True, False, False] 

A list can contain different data types. 

Example: A list with strings, integers and boolean values. 

list1 = ["abc", 34, True, 40, "male"] 
 

3. type(): From Python's perspective, lists are defined as objects with the data type 'list'. 

Example: What is the data type of a list? 

mylist = ["apple", "banana", "cherry"] 

print(type(mylist)) 

Result: class ‘list’ 

 

4. The list() Constructor: It is also possible to use the list() constructor when creating a new list. 

Example: Using the list() constructor to make a list. 

thislist = list(("apple", "banana", "cherry")) # note the double round-brackets 

print(thislist) 

Result: [‘apple’, ‘banana’, ‘cherry’] 

 

ACCESSING THE LIST ITEMS:  List items are indexed and you can access them by referring 

to the index number. 

Example: Print the second item of the list. 

thislist = ["apple", "banana", "cherry"] 

print(thislist[1]) 

Result: banana 

Note: The first item has index 0. 

1. Negative Indexing: Negative indexing means start from the end. 

    -1 refers to the last item, -2 refers to the second last item etc. 

Example: Print the last item of the list. 

thislist = ["apple", "banana", "cherry"] 

print(thislist[-1]) 

Result: cherry 

2. Range of Indexes: You can specify a range of indexes by specifying where to start and where to 

end the range. When specifying a range, the return value will be a new list with the specified items. 

Example: Return the third, fourth and fifth item. 

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"] 

 



print(thislist[2:5]) 

Result: [‘cherry’, ‘orange’, ‘kiwi’] 

Note: The search will start at index 2 (included) and end at index 5 (not included). Remember that 

the first item has index 0. By leaving out the start value, the range will start at the first item. 

Example: This returns the items from the beginning to, but NOT included, “kiwi”. 

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"] 

print(thislist[:4]) 

Result: [‘apple’, ‘banana’, ‘cherry’, ‘orange’] 

This will return the items from index 0 to index 4. Remember that index 0 is the first item, and 

index 4 is the fifth item. Remember that the item in index 4 is NOT included 

By leaving out the end value, the range will go on to the end of the list. 

Example: This example returns the items from “cherry” and to the end. 

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"] 

print(thislist[2:]) 

Result: [‘cherry’, ‘orange’, ‘kiwi’, ‘melon’,’mango’] 

This will return the items from index 2 to the end. Remember that index 0 is the first item, and 

index 2 is the third. 

3.  Range of Negative Indexes: Specify negative indexes if you want to start the search from the 

end of the list. 

Example: This example returns the items from “orange”(-4) to, but NOT included “mango”(-1).  

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"] 

print(thislist[-4:-1]) 

Result: [‘orange’, ‘kiwi’, ‘melon’] 

Negative indexing means starting from the end of the list. This example returns the items from 

index -4 (included) to index -1 (excluded). Remember that the last item has the index -1, 

4. Check if Item Exists: To determine if a specified item is present in a list use the in keyword. 

Example: Check if “apple” is present in the list. 

thislist = ["apple", "banana", "cherry"] 

if "apple" in thislist: 

  print("Yes, 'apple' is in the fruits list") 

Result: Yes, ‘apple’ is in the fruits list 

 

 

 

 



CHANGE/ADD/REMOVE LIST ITEMS 

1. Change Item Value: To change the value of a specific item, refer to the index number. 

Example 1: Change the second item. 

thislist = ["apple", "banana", "cherry"] 

thislist[1] = "blackcurrant" 

print(thislist) 

Result: [‘apple’, ‘blackcurrant’, ‘cherry’]  

To insert more than one item, create a list with the new values, and specify the index number 

where you want the new values to be inserted. 

Example 2: Change the second value by replacing it with two new values. 

thislist = ["apple", "banana", "cherry"] 

thislist[1] = ["blackcurrant", "watermelon"] 

print(thislist) 

Result: [‘apple’, [‘blackcurrant’, ‘watermelon’], ‘cherry’]  

 

Note: The length of the list will change when the number of items inserted does not match the 

number of items replaced. 

2. Change a Range of Item Values: To change the value of items within a specific range, define a 

list with the new values, and refer to the range of index numbers where you want to insert the new 

values. 

Example 3: Change the values "banana" and "cherry" with the values "blackcurrant" and 

"watermelon". 

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "mango"] 

thislist[1:3] = ["blackcurrant", "watermelon"] 

print(thislist) 

Result: [‘apple’, ‘blackcurrant’, ‘watermelon’, ‘orange’, ‘kiwi’, ‘mango’] 

3. Insert Items: To insert a new list item, without replacing any of the existing values, we can use 

the insert() method. The insert() method inserts an item at the specified index. 

Example 4: Insert “watermelon” as the third item. 

thislist = ["apple", "banana", "cherry"] 

thislist.insert(2, "watermelon") 

print(thislist) 

Result: [‘apple’, ‘banana’, ‘watermelon’, ‘cherry’] 

 

Note: As a result of the example above, the list will now contain 4 items. 

4. Append Items: To add an item to the end of the list, use the append() method. 

Example 5: Using the append() method to append an item. 

thislist = ["apple", "banana", "cherry"] 

thislist.append("orange") 

print(thislist) 



Result: [‘apple’, ‘banana’, ‘cherry’, ‘orange’] 

5. Remove Specified Item: The remove() method removes the specified item. 

Example 6: Remove "banana". 

thislist = ["apple", "banana", "cherry"] 

thislist.remove("banana") 

print(thislist) 

Result: [‘apple’, ‘cherry’]  

6. Remove Specified Index: The pop() method removes the specified index. 

Example 7: Remove the second item. 

thislist = ["apple", "banana", "cherry"] 

thislist.pop(1) 

print(thislist) 

Result: [‘apple’, ‘cherry’]. If you do not specify the index, the pop() method removes the last item. 

 

Example 8: Remove the last item. 

 

thislist = ["apple", "banana", "cherry"] 

thislist.pop() 

print(thislist) 

Result: [‘apple’, ‘banana’] 

7. The del keyword also removes the specified index. 

Example 9: Remove the first item. 

thislist = ["apple", "banana", "cherry"] 

del thislist[0] 

print(thislist) 

Result: [‘banana’, ‘cherry’]  

8. The del keyword can also delete the list completely.  

Example 10: Delete the entire list. 

thislist = ["apple", "banana", "cherry"] 

del thislist 

Result: Successfully deleted “thislist”  

9. Clear the List: The clear() method empties the list. The list still remains, but it has no content. 

Example 11: Clear the list content. 

thislist = ["apple", "banana", "cherry"] 

thislist.clear() 

print(thislist) 

Result: [ ]   

 

 

 



LOOP THROUGH A LIST 

1. You can loop through the list items by using for loop.  

Example: Print all items in the list, one by one. 

thislist = ["apple", "banana", "cherry"] 

for x in thislist: 

  print(x) 

Result:  apple, banana, cherry 

2. Using a While Loop: You can loop through the list items by using a while loop. Use 

the len() function to determine the length of the list, then start at 0 and loop your way through 

the list items by refering to their indexes. Remember to increase the index by 1 after each 

iteration. 

Example: Print all items, using a while loop to go through all the index numbers. 

thislist = ["apple", "banana", "cherry"] 

i = 0 

while i < len(thislist): 

  print(thislist[i]) 

  i = i + 1 

Result: apple, banana, cherry  
 

COPY A LIST: You cannot copy a list simply by typing list2 = list1, because: list2 will only be 

a reference to list1, and changes made in list1 will automatically also be made in list2. 

1. There are ways to make a copy, one way is to use the built-in List method copy(). 

Example: Make a copy of a list with the copy() method. 

thislist = ["apple", "banana", "cherry"] 

mylist = thislist.copy() 

print(mylist) 
 

Result: [‘apple’, ‘banana’, ‘cherry’]  

2. Another way to make a copy is to use the built-in method list(). 

Example: Make a copy of a list with the list() method. 

thislist = ["apple", "banana", "cherry"] 

mylist = list(thislist) 

print(mylist) 

Result: [‘apple’, ‘banana’, ‘cherry’]   

JOIN TWO LISTS: There are several ways to join, or concatenate, two or more lists in Python. 

1. One of the easiest ways are by using the + operator. 

Example: Join two lists. 



list1 = ["a", "b", "c"] 

list2 = [1, 2, 3] 

list3 = list1 + list2 

print(list3) 
 

Result: [‘a’, ’b’, ‘c’, 1, 2, 3]   

2. Another way to join two lists is by appending all the items from list2 into list1, one by one. 

Example: Append list2 into list1. 

list1 = ["a", "b", "c"] 

list2 = [1, 2, 3] 

for x in list2: 

  list1.append(x) 

print(list1) 

Result: [‘a’, ’b’, ‘c’, 1, 2, 3]   

3. You can use the extend() method, which purpose is to add elements from one list to 

another list. 

Example: Use the extend() method to add list2 at the end of list1. 

list1 = ["a", "b", "c"] 

list2 = [1, 2, 3] 

list1.extend(list2) 

print(list1) 

Result: [‘a’, ’b’, ‘c’, 1, 2, 3]  

 

SORTING THE LISTS 

1. Sort List Alphanumerically: List objects have a sort() method that will sort the list 

alphanumerically, ascending, by default. 

Example: Sort the list alphabetically. 

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"] 

thislist.sort() 

print(thislist) 

Result: [‘banana’, ‘kiwi’, ‘mango’, ‘orange’, ‘pineapple’] 

 

Example: Sort the list numerically. 

 

thislist = [100, 50, 65, 82, 23] 

thislist.sort() 

print(thislist) 

Result: [23, 50, 65, 82,100] 

2. Sort Descending: To sort descending, use the keyword argument reverse = True.  

Example: Sort the list descending. 



thislist = ["orange", "mango", "kiwi", "pineapple", "banana"] 

thislist.sort(reverse = True) 

print(thislist) 

Result: [‘pineapple’,’orange’, ‘mango’, ‘kiwi’, ‘banana’] 

 

Example: Sort the list descending. 

 

thislist = [100, 50, 65, 82, 23] 

thislist.sort(reverse = True) 

print(thislist) 

Result: [100, 82, 65, 50, 23]  

3. Case Insensitive Sort: By default the sort() method is case sensitive, resulting in all capital 

letters being sorted after lower case letters. 

Example: Case sensitive sorting can give an unexpected result. 

thislist = ["banana", "Orange", "Kiwi", "cherry"] 

thislist.sort() 

print(thislist) 

Result: [‘Kiwi’, ‘Orange’, ‘banana’, ‘cherry’] 

4. Luckily we can use built-in functions as key functions when sorting a list: So if you want a 

case-insensitive sort function, use str.lower as a key function. 

Example: Perform a case-insensitive sort of the list.  

thislist = ["banana", "Orange", "Kiwi", "cherry"] 

thislist.sort(key = str.lower) 

print(thislist) 

Result: [‘banana’, ‘cherry’, ‘Kiwi’, ‘Orange’] 

5. Reverse Order: What if you want to reverse the order of a list, regardless of the alphabet? 

The reverse() method reverses the current sorting order of the elements. 

Example: Reverse the order of the list items. 

thislist = ["banana", "Orange", "Kiwi", "cherry"] 

thislist.reverse() 

print(thislist) 

Result: [‘cherry’, ‘Kiwi’, ‘Orange’, ‘banana’] 

 

TUPLES: Tuples are used to store multiple items in a single variable. A tuple is a collection which 

is ordered and unchangeable. Tuples are written with round brackets. 

Example: Create a Tuple 

thistuple = ("apple", "banana", "cherry") 

print(thistuple) 

Result: (‘apple’, ‘banana’, ‘cherry’)  



1. Tuple Items: Tuple items are ordered, unchangeable, and allow duplicate values. Tuple items 

are indexed, the first item has index [0], the second item has index [1] etc. 

Ordered: When we say that tuples are ordered, it means that the items have a defined order, and 

that order will not change. 

Unchangeable: Tuples are unchangeable, meaning that we cannot change, add or remove items 

after the tuple has been created. 

Allow Duplicates: Since tuple are indexed, tuples can have items with the same value: 

Example: Tuples allow duplicate values: 

thistuple = ("apple", "banana", "cherry", "apple", "cherry") 

print(thistuple) 

Result: (‘apple’, ‘banana’, ‘cherry’, ‘apple’, ‘cherry’) 

2. Tuple Length: To determine how many items a tuple has, use the len() function: 

Example: Print the number of items in the tuple 

thistuple = ("apple", "banana", "cherry") 

print(len(thistuple)) 

Result: 3 

3. Tuple Items - Data Types: Tuple items can be of any data type 

Example: string, int and Boolean data types 

tuple1 = ("apple", "banana", "cherry") 

tuple2 = (1, 5, 7, 9, 3) 

tuple3 = (True, False, False) 

4. A tuple can contain different data types 

Example: A tuple with strings,integers and boolean values:   

tuple1 = ("abc", 34, True, 40, "male") 

5. type( ): From Python's perspective, tuples are defined as objects with the data type 'tuple': 

Example: What is the data type of a tuple? 

mytuple = ("apple", "banana", "cherry") 

print(type(mytuple)) 

Result: class ‘tuple’ 

6. The tuple() Constructor: It is also possible to use the tuple() constructor to make a tuple. 

Example: Using the tuple() method to make a tuple  

thistuple = tuple(("apple", "banana", "cherry"))                 # note the double round-brackets 

print(thistuple) 

Result: (‘apple’, ‘banana’, ‘cherry’) 



 

ACCESS TUPLE ITEMS 

1. Access Tuple Items: You can access tuple items by referring to the index number, inside 

square brackets: 

Example: Print the second item in the tuple 

thistuple = ("apple", "banana", "cherry") 

print(thistuple[1]) 

Result: banana 

 

Note: The first item has index 0. 

2. Negative Indexing: Negative indexing means start from the end. -1 refers to the last item,         

-2 refers to the second last item etc. 

Example: Print the last item of the tuple 

thistuple = ("apple", "banana", "cherry") 

print(thistuple[-1]) 

Result: cherry 

3. Range of Indexes: You can specify a range of indexes by specifying where to start and where 

to end the range. When specifying a range, the return value will be a new tuple with the 

specified items. 

Example: Return the third, fourth, and fifth item 

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango") 

print(thistuple[2:5]) 

Result: (‘cherry’, ‘orange’, ‘kiwi’) 

 

Note: The search will start at index 2 (included) and end at index 5 (not included). Remember that 

the first item has index 0. 

4. By leaving out the start value, the range will start at the first item 

Example: This example returns the items from the beginning to, but NOT included, "kiwi": 

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango") 

print(thistuple[:4]) 

Result: (‘apple’, ’banana’, ‘cherry’, ‘orange’) 

5. By leaving out the end value, the range will go on to the end of the list 

Example: This example returns the items from "cherry" and to the end: 

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango") 

print(thistuple[2:]) 

Result: (‘cherry’, ‘orange’, ‘kiwi’, ‘melon’, ‘mango’) 

6. Range of Negative Indexes: Specify negative indexes if you want to start the search from the 

end of the tuple: 



Example: This example returns the items from index -4 (included) to index -1 (excluded) 

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango") 

print(thistuple[-4:-1]) 

Result: (‘orange’, ‘kiwi’, ‘melon’) 

7. Check if Item Exists: To determine if a specified item is present in a tuple use the in keyword: 

Example: Check if "apple" is present in the tuple: 

thistuple = ("apple", "banana", "cherry") 

if "apple" in thistuple: 

  print("Yes, 'apple' is in the fruits tuple") 

Result: Yes, ‘apple’ is in the fruits tuple 

Python - Update Tuples 

1. Change Tuple Values: Once a tuple is created, you cannot change its values. Tuples 

are unchangeable, or immutable as it also is called.  

But there is a workaround. You can convert the tuple into a list, change the list, and convert the list 

back into a tuple. 

Example: Convert the tuple into a list to be able to change it 

x = ("apple", "banana", "cherry") 

y = list(x) 

y[1] = "kiwi" 

x = tuple(y) 

print(x) 

Result: (“apple”, “kiwi”, “cherry”) 

2. Add Items: Once a tuple is created, you cannot add items to it. 

Example: You cannot add items to a tuple 

thistuple = ("apple", "banana", "cherry") 

thistuple.append("orange") # This will raise an error 

print(thistuple) 

Result: ‘tuple’ object has no attribute ‘append’ 

Just like the workaround for changing a tuple, you can convert it into a list, add your item(s), 

and convert it back into a tuple. 

Example: Convert the tuple into a list, add "orange", and convert it back into a tuple 

thistuple = ("apple", "banana", "cherry") 

y = list(thistuple) 

y.append("orange") 

thistuple = tuple(y) 

Result: (‘apple’, ‘banana’, ‘cherry’, ‘orange’) 



3. Remove Items: Tuples are unchangeable, so you cannot remove items from it, but you can use 

the same workaround as we used for changing and adding tuple items: 

Example: Convert the tuple into a list, remove "apple", and convert it back into a tuple 

thistuple = ("apple", "banana", "cherry") 

y = list(thistuple) 

y.remove("apple") 

thistuple = tuple(y) 

Result: (‘banana’, ‘cherry’) 

4. Or you can delete the tuple completely 

Example: The del keyword can delete the tuple completely 

thistuple = ("apple", "banana", "cherry") 

del thistuple 

print(thistuple) #this will raise an error because the tuple no longer exists 

Loop through a Tuple 

1. Loop Through a Tuple: You can loop through the tuple items by using a for loop. 

Example: Iterate through the items and print the values 

thistuple = ("apple", "banana", "cherry") 

for x in thistuple: 

  print(x) 

Result: apple, banana, cherry 

2. Loop Through the Index Numbers: You can also loop through the tuple items by referring to 

their index number. Use the range() and len() functions to create a suitable iterable. 

Example: Print all items by referring to their index number: 

thistuple = ("apple", "banana", "cherry") 

for i in range(len(thistuple)): 

  print(thistuple[i]) 

Result: apple, banana, cherry 

3. Using a While Loop: You can loop through the list items by using a while loop. Use 

the len() function to determine the length of the tuple, then start at 0 and loop your way through 

the tuple items by referring to their indexes. Remember to increase the index by 1 after each 

iteration. 

Example: Print all items, using a while loop to go through all the index numbers: 

thistuple = ("apple", "banana", "cherry") 

i = 0 

while i < len(thistuple): 

  print(thistuple[i]) 

  i = i + 1 

4. Join Two Tuples: To join two or more tuples you can use the + operator: 



Example: Join two tuples 

tuple1 = ("a", "b", "c") 

tuple2 = (1, 2, 3) 

tuple3 = tuple1 + tuple2 

print(tuple3) 

Result: (‘a’, ‘b’, ‘c’, 1, 2, 3) 

5. Multiply Tuples: If you want to multiply the content of a tuple a given number of times, you 

can use the * operator: 

Example: Multiply the fruits tuple by 2 

fruits = ("apple", "banana", "cherry") 

mytuple = fruits * 2 

print(mytuple) 

Result: (‘apple’, ‘banana’, ‘cherry’, ‘apple’, ‘banana’, ‘cherry’) 

 

Sets 

Sets are used to store multiple items in a single variable. A set is a collection which is 

both unordered and unindexed. Sets are written with curly brackets. 

Example: Create a Set 

thisset = {"apple", "banana", "cherry"} 

print(thisset) 

 

Note: Sets are unordered, so you cannot be sure in which order the items will appear. 

1. Set Items: Set items are unordered, unchangeable, and do not allow duplicate values. 

Unordered: Unordered means that the items in a set do not have a defined order.Set items can 

appear in a different order every time you use them, and cannot be referred to by index or key. 

Unchangeable: Sets are unchangeable, meaning that we cannot change the items after the set has 

been created. 

Once a set is created, you cannot change its items, but you can add new items. 

Duplicates Not Allowed: Sets cannot have two items with the same value. 

Example: Duplicate values will be ignored: 

thisset = {"apple", "banana", "cherry", "apple"} 

print(thisset) 

2. Get the Length of a Set: To determine how many items a set has, use the len() method. 

Example: Get the number of items in a set 

thisset = {"apple", "banana", "cherry"} 

print(len(thisset)) 

3. Set Items - Data Types: Set items can be of any data type: 



Example: String, int and boolean data types: 

set1 = {"apple", "banana", "cherry"} 

set2 = {1, 5, 7, 9, 3} 

set3 = {True, False, False} 

A set can contain different data types: 

Example: A set with strings, integers and boolean values: 

set1 = {"abc", 34, True, 40, "male"} 

4. type(): From Python's perspective, sets are defined as objects with the data type 'set': 

<class 'set'> 

Example: What is the data type of a set? 

myset = {"apple", "banana", "cherry"} 

print(type(myset)) 

5. The set() Constructor: It is also possible to use the set() constructor to make a set. 

Example: Using the set() constructor to make a set: 

thisset = set(("apple", "banana", "cherry")) # note the double round-brackets 

print(thisset) 

Access Items- Set 

You cannot access items in a set by referring to an index or a key. You can loop through the set 

items using a for loop.  

Example: Loop through the set, and print the values 

thisset = {"apple", "banana", "cherry"} 

for x in thisset: 

  print(x) 

Result: cherry, apple,banana 

 

1. You may ask if a specified value is present in a set, by using the in keyword. 

Example: Check if "banana" is present in the set: 

thisset = {"apple", "banana", "cherry"} 

print("banana" in thisset) 

Result: True 

 

2. Change Items: Once a set is created, you cannot change its items, but you can add new items. 

 

3. Add Items: To add one item to a set use the add() method. 

Example: Add an item to a set, using the add() method 

thisset = {"apple", "banana", "cherry"} 

thisset.add("orange") 

print(thisset) 

Result:{‘cherry’, ‘apple’, ‘banana’, ‘orange’} 



4. Remove Items: To remove an item in a set, use the remove(), or the discard() method. 

Example: Remove "banana" by using the remove() method 

thisset = {"apple", "banana", "cherry"} 

thisset.remove("banana") 

print(thisset) 

Result: {‘cherry’, ‘apple’} 

 

Note: If the item to remove does not exist, remove() will raise an error. 

5. Example: Remove "banana" by using the discard() method: 

thisset = {"apple", "banana", "cherry"} 

thisset.discard("banana") 

print(thisset) 

Result: {‘apple’, ‘cherry’} 

 

Note: If the item to remove does not exist, discard() will NOT raise an error. 

6. You can also use the pop(), method to remove an item, but this method will remove 

the last item. Remember that sets are unordered, so you will not know what item that gets 

removed. The return value of the pop() method is the removed item. 

Example: Remove the last item by using the pop() method 

thisset = {"apple", "banana", "cherry"} 

x = thisset.pop() 

print(x) 

print(thisset) 

Result: cherry 

 {‘apple’, ‘banana’}  

Note: Sets are unordered, so when using the pop() method, you do not know which item that gets 

removed. 

7. Example: The del keyword will delete the set completely 

thisset = {"apple", "banana", "cherry"} 

del thisset 

print(thisset) 

Result: #this will raise an error because the set no longer exists 

8. Loop Items: You can loop through the set items by using a for loop 

Example: Loop through the set, and print the values: 

thisset = {"apple", "banana", "cherry"} 

for x in thisset: 

  print(x) 

Result: cherry, banana, apple  

 

Join Two Sets: There are several ways to join two or more sets in Python. 

1. You can use the union() method that returns a new set containing all items from both sets.  



Example: union() method returns a new set with all items from both sets 

set1 = {"a", "b", "c"} 

set2 = {1, 2, 3} 

set3 = set1.union(set2) 

print(set3) 

Result: {‘b’, 2, 1, ‘a’, ‘c’, 3}  

 

2. You can use the update() method that inserts all the items from one set into another 

Example: The update() method inserts the items in set2 into set1 

set1 = {"a", "b", "c"} 

set2 = {1, 2, 3} 

set1.update(set2) 

print(set1) 

Result: {1, ‘a’, 2, ’c’, 3, ’b’} 

  

Note: Both union() and update() will exclude any duplicate items. 

Keep ONLY the Duplicates 

3. The intersection() method will return a new set, that only contains the items that are present in 

both sets. 

Example: Keep the items that exist in both set x, and set y 

x = {"apple", "banana", "cherry"} 

y = {"google", "microsoft", "apple"} 

z = x.intersection(y) 

print(z) 

Result:{‘apple’} 

Keep All, But NOT the Duplicates 

4. The symmetric_difference() method will return a new set, that contains only the elements that 

are NOT present in both sets. 

Example: Return a set that contains all items from both sets, except items that are present in both 

x = {"apple", "banana", "cherry"} 

y = {"google", "microsoft", "apple"} 

z = x.symmetric_difference(y) 

print(z) 

Result: {‘google’, ‘banana’, ‘microsoft’, ‘cherry’}  

 

Python Dictionaries: Dictionaries are used to store data values in key:value pairs. A dictionary is 

a collection which is unordered, changeable and does not allow duplicates. Dictionaries are written 

with curly brackets, and have keys and values: 

Example: Create and print a dictionary 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 



print(thisdict) 

Result:{‘brand’:’Ford’,’model’:’Mustang’,’year’:1964}  

1. Dictionary Items: Dictionary items are unordered, changeable, and does not allow duplicates. 

Dictionary items are presented in key:value pairs, and can be referred to by using the key name. 

Example: Print the "brand" value of the dictionary: 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

print(thisdict["brand"]) 

Result: Ford  

Unordered: When we say that dictionaries are unordered, it means that the items does not have a 

defined order, you cannot refer to an item by using an index. 

Changeable: Dictionaries are changeable, meaning that we can change, add or remove items after 

the dictionary has been created. 

Duplicates Not Allowed: Dictionaries cannot have two items with the same key: 

Example: Duplicate values will overwrite existing values: 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964, 

  "year": 2020 

} 

print(thisdict) 

Result: :{‘brand’:’Ford’,’model’:’Mustang’,’year’:2020}   

2. Dictionary Length: To determine how many items a dictionary has, use the len() function: 

Example: Print the number of items in the dictionary: 

print(len(thisdict)) 

Result:3 

3. Dictionary Items - Data Types: The values in dictionary items can be of any data type: 

Example: String, int, boolean, and list data types: 

thisdict = { 

  "brand": "Ford", 

  "electric": False, 

  "year": 1964, 

  "colors": ["red", "white", "blue"] 

} 

4. type(): From Python's perspective, dictionaries are defined as objects with the data type 'dict' 

Example: Print the data type of a dictionary: 



thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

print(type(thisdict)) 

<class ‘dict’> 

Accessing Items-Dictionaries: You can access the items of a dictionary by referring to its key 

name, inside square brackets: 

Example: Get the value of the "model" key 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

x = thisdict["model"] 

print(x) 

Result: Mustang 

There is also a method called get() that will give you the same result: 

Example: Get the value of the "model" key 

x = thisdict.get("model") 

 

1.  Get Keys: The keys() method will return a list of all the keys in the dictionary. 

Example: Get a list of the keys 

x = thisdict.keys() 

Result: dict_keys([‘brand’, ‘model’, ‘year’]) 

The list of the keys is a view of the dictionary, meaning that any changes done to the dictionary 

will be reflected in the keys list. 

Example: Add a new item to the original dictionary, and see that the keys list gets updated as well 

car = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

x = car.keys() 

print(x) #before the change 

car["color"] = "white" 

print(x) #after the change 

Result: dict_keys([‘brand’, ‘model’, ‘year’]) 

   Dict_keys([‘brand’, ‘model’, ‘year’, ‘color’)] 

 

2.  Get Values: The values() method will return a list of all the values in the dictionary. 

Example: Get a list of the values 

x = thisdict.values() 



The list of the values is a view of the dictionary, meaning that any changes done to the dictionary 

will be reflected in the values list. 

Example: Add a new item to the original dictionary, and see that the keys list gets updated as well 

car = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

x = car.values() 

print(x) #before the change 

car["year"] = 2020 

print(x) #after the change 

Result: dict_values([‘Ford’, ‘Mustang’, ‘1964]) 

    dict_values([‘Ford’, ‘Mustang’, 2020]) 

3. Get Items: The items() method will return each item in a dictionary, as tuples in a list. 

Example: Get a list of the key:value pairs 

x = thisdict.items() 

 

Result: dict_items([(‘brand’, ‘Ford’), (‘model’, ‘Mustang’), (‘year’, 1964)]) 

The returned list is a view of the items of the dictionary, meaning that any changes done to the 

dictionary will be reflected in the items list. 

Example: Add a new item to the original dictionary, and see that the items list gets updated as well: 

car = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

x = car.items() 

print(x) #before the change 

car["year"] = 2020 

print(x) #after the change 

4. Check if Key Exists: To determine if a specified key is present in a dictionary use 

the in keyword: 

Example: Check if "model" is present in the dictionary: 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

if "model" in thisdict: 

  print("Yes, 'model' is one of the keys in the thisdict dictionary") 

Change Dictionary Values: You can change the value of a specific item by referring to its key 

name: 



Example: Change the "year" to 2018 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

thisdict["year"] = 2018 

 

Update Dictionary: The update() method will update the dictionary with the items from the given 

argument. The argument must be a dictionary, or an iterable object with key:value pairs. 

Example: Update the "year" of the car by using the update() method 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

thisdict.update({"year": 2020}) 

Adding Items: Adding an item to the dictionary is done by using a new index key and assigning a 

value to it: 

Example: thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

thisdict["color"] = "red" 

print(thisdict) 

 

Removing Items: There are several methods to remove items from a dictionary. 

 

Example: The pop()method removes the item with the specified key name: 

 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

thisdict.pop("model") 

print(thisdict) 

 

Example: The popitem() method removes the last inserted item (in versions before 3.7, a random 

item is removed instead): 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

thisdict.popitem() 

print(thisdict) 

 



Example: The del keyword removes the item with the specified key name: 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

del thisdict["model"] 

print(thisdict) 

 

Example: The del keyword can also delete the dictionary completely: 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

del thisdict 

print(thisdict) #this will cause an error because "thisdict" no longer exists. 

 

Example: The clear() method empties the dictionary: 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

thisdict.clear() 

print(thisdict) 

 

Loop Through a Dictionary: You can loop through a dictionary by using a for loop. When 

looping through a dictionary, the return value are the keys of the dictionary, but there are methods 

to return the values as well. 

Example: Print all key names in the dictionary, one by one 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

for x in thisdict: 

  print(x) 

Result: brand, model,year  

 

Example: Print all values in the dictionary, one by one 

for x in thisdict: 

  print(thisdict[x]) 

Result: Ford, Mustang,1964  

 

Example: You can also use the values() method to return values of a dictionary: 

for x in thisdict.values(): 

  print(x) 

Result: Ford, Mustang,1964  

 



Example: You can use the keys() method to return the keys of a dictionary 

for x in thisdict.keys(): 

  print(x) 

Result: brand, model, year 

 

Example: Loop through both keys and values, by using the items() method: 

for x, y in thisdict.items(): 

  print(x, y) 

Result: brand   Ford 

   model   Mustang 

   year     1964 

 

Copy a Dictionary 

1. There are ways to make a copy, one way is to use the built-in Dictionary method copy(). 

Example: Make a copy of a dictionary with the copy() method 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

mydict = thisdict.copy() 

print(mydict) 

2. Another way to make a copy is to use the built-in function dict(). 

Example: Make a copy of a dictionary with the dict() function 

thisdict = { 

  "brand": "Ford", 

  "model": "Mustang", 

  "year": 1964 

} 

mydict = dict(thisdict) 

print(mydict) 

Nested Dictionaries: A dictionary can contain dictionaries, this is called nested dictionaries. 

Example: Create a dictionary that contain three dictionaries 

myfamily = { 

  "child1" : { 

    "name" : "Emil", 

    "year" : 2004 

  }, 

  "child2" : { 

    "name" : "Tobias", 

    "year" : 2007 



  }, 

  "child3" : { 

    "name" : "Linus", 

    "year" : 2011 

  } 

} 

Or, if you want to add three dictionaries into a new dictionary: 

Example: Create three dictionaries, then create one dictionary that will contain the other three 

dictionaries 

child1 = { 

  "name" : "Emil", 

  "year" : 2004 

} 

child2 = { 

  "name" : "Tobias", 

  "year" : 2007 

} 

child3 = { 

  "name" : "Linus", 

  "year" : 2011 

} 

myfamily = { 

  "child1" : child1, 

  "child2" : child2, 

  "child3" : child3 

} 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-5 (FUNCTIONS) 

Python Functions: A function is a block of code which only runs when it is called. You can pass 

data, known as parameters, into a function. A function can return data as a result. 

As you already know, Python gives you many built-in functions like print(), etc. but you can also 

create your own functions. These functions are called user-defined functions. 

1. Defining a Function: Here are simple rules to define a function in Python. 

• Function blocks begin with the keyword def followed by the function name and 

parentheses ( ). 

• Any input parameters or arguments should be placed within these parentheses. You can 

also define parameters inside these parentheses. 

• The code block within every function starts with a colon (:) and is indented. 

• The statement return [expression] exits a function, optionally passing back an expression to 

the caller. A return statement with no arguments is the same as return None. 

Example: The following function takes a string as input parameter and prints it on standard screen. 

def printme(str): 

   "This prints a passed string into this function" 

   print str 

   return 

2. Creating a Function: In Python a function is defined using the def keyword. Defining a 

function only gives it a name, specifies the parameters that are to be included in the function 

and structures the blocks of code. 

def my_function(): 

  print("Hello from a function") 

3. Calling a Function: To call a function, use the function name followed by parenthesis: 

def my_function(): 

  print("Hello from a function") 

my_function() 
 

Once the basic structure of a function is finalized, you can execute it by calling it from another 

function or directly from the Python prompt. Following is the example to call printme() function − 

# Function definition is here 

def printme(str): 

   "This prints a passed string into this function" 

   print str 

   return; 

 

# Now you can call printme function 

printme("I'm first call to user defined function!") 

printme("Again second call to the same function") 

When the above code is executed, it produces the following result − 

I'm first call to user defined function! 



Again second call to the same function 

4. Arguments: Information can be passed into functions as arguments. Arguments are specified 

after the function name, inside the parentheses. You can add as many arguments as you want, 

just separate them with a comma. 

The following example has a function with one argument (fname). When the function is called, we 

pass along a first name, which is used inside the function to print the full name: 

def my_function(fname): 

  print(fname + " Refsnes") 

 

my_function("Emil") 

my_function("Tobias") 

my_function("Linus") 

5. Parameters or Arguments?: The terms parameter and argument can be used for the same 

thing: information that are passed into a function. 

From a function's perspective: A parameter is the variable listed inside the parentheses in the 

function definition.  

An argument is the value that is sent to the function when it is called. 

6. Number of Arguments: By default, a function must be called with the correct number of 

arguments. Meaning that if your function expects 2 arguments, you have to call the function 

with 2 arguments, not more, and not less. 

Example: This function expects 2 arguments, and gets 2 arguments: 

def my_function(fname, lname): 

  print(fname + " " + lname) 

my_function("Emil", "Refsnes") 

 

Result: Emil Refsnes 

 

If you try to call the function with 1 or 3 arguments, you will get an error: 

 

Example: This function expects 2 arguments, but gets only 1: 

def my_function(fname, lname): 

  print(fname + " " + lname) 

my_function("Emil") 

 

Result: Error  

 

Function Arguments 

1. Pass by reference vs value: All parameters (arguments) in the Python language are passed by 

reference. It means if you change what a parameter refers to within a function, the change also 

reflects back in the calling function. For example − 

# Function definition is here 

def changeme( mylist ): 

   "This changes a passed list into this function" 



   mylist.append([1,2,3,4]); 

   print "Values inside the function: ", mylist 

   return 

 

# Now you can call changeme function 

mylist = [10,20,30]; 

changeme( mylist ); 

print "Values outside the function: ", mylist 

Here, we are maintaining reference of the passed object and appending values in the same object. 

So, this would produce the following result − 

Values inside the function:  [10, 20, 30, [1, 2, 3, 4]] 

Values outside the function:  [10, 20, 30, [1, 2, 3, 4]] 

2. Arbitrary Arguments, *args: If you do not know how many arguments that will be passed 

into your function, add a * before the parameter name in the function definition. 

This way the function will receive a tuple of arguments, and can access the items accordingly: 

Example: If the number of arguments is unknown, add a * before the parameter name. 

def my_function(*kids): 

  print("The youngest child is " + kids[2]) 

 

my_function("Emil", "Tobias", "Linus") 

 

Result: The youngest child is Linus 

 

Arbitrary Arguments are often shortened to *args in Python documentations. 

3. Keyword Arguments: You can also send arguments with the key = value syntax. This way the 

order of the arguments does not matter. 

Example: 

def my_function(child3, child2, child1): 

  print("The youngest child is " + child3) 

 

my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus") 

 

The phrase Keyword Arguments are often shortened to kwargs in Python documentations. 

4. Arbitrary Keyword Arguments, **kwargs: If you do not know how many keyword 

arguments that will be passed into your function, add two asterisk: ** before the parameter 

name in the function definition. 

This way the function will receive a dictionary of arguments, and can access the items accordingly: 

Example: If the number of keyword arguments is unknown, add a double ** before the parameter 

name: 

def my_function(**kid): 

  print("His last name is " + kid["lname"]) 

 

my_function(fname = "Tobias", lname = "Refsnes") 



 

Result: His last name is Refsnes 

 

Arbitrary Kword Arguments are often shortened to **kwargs in Python documentations. 

5. Default Parameter Value: The following example shows how to use a default parameter 

value. If we call the function without argument, it uses the default value: 

Example: 

def my_function(country = "Norway"): 

  print("I am from " + country) 

 

my_function("Sweden") 

my_function("India") 

my_function() 

 

Result: I am from Sweden 

 I am from India 

 I am from Norway 

6. Passing List as an Argument: You can send any data types of argument to a function (string, 

number, list, dictionary etc.), and it will be treated as the same data type inside the function. 

E.g. if you send a List as an argument, it will still be a List when it reaches the function: 

def my_function(food): 

  for x in food: 

    print(x) 

 

fruits = ["apple", "banana", "cherry"] 

my_function(fruits) 
 

7. Return Values: To let a function return a value, use the return statement: 

def my_function(x): 

  return 5 * x 

print(my_function(3)) 

print(my_function(5)) 

print(my_function(9)) 
 

Result: 15, 25, 45  

8. The pass Statement: function definitions cannot be empty, but if you for some reason have 

a function definition with no content, put in the pass statement to avoid getting an error. 

Example 

def myfunction(): 

  pass 

9. Recursion: Python also accepts function recursion, which means a defined function can call 

itself. 



Recursion is a common mathematical and programming concept. It means that a function calls 

itself. This has the benefit of meaning that you can loop through data to reach a result. 

In this example, tri_recursion() is a function that we have defined to call itself ("recurse"). We use 

the k variable as the data, which decrements (-1) every time we recurse. The recursion ends when 

the condition is not greater than 0 (i.e. when it is 0). 

def tri_recursion(k): 

  if(k > 0): 

    result = k + tri_recursion(k - 1) 

    print(result) 

  else: 

    result = 0 

  return result 

 

print("\n\nRecursion Example Results") 

tri_recursion(6) 

Result: Recursion Example Results 

1, 3, 6, 10, 15,21 

Python Lambda: A lambda function is a small anonymous function. A lambda function can take 

any number of arguments, but can only have one expression. 

These functions are called anonymous because they are not declared in the standard manner by 

using the def keyword. You can use the lambda keyword to create small anonymous functions. 

• Lambda forms can take any number of arguments but return just one value in the form of 

an expression. They cannot contain commands or multiple expressions. 

• Lambda functions have their own local namespace and cannot access variables other than 

those in their parameter list and those in the global namespace. 

Syntax: The syntax of lambda functions contains only a single statement as follows: 

lambda [arg1 [,arg2,.....argn]]:expression 

 

Syntax: lambda arguments: expression 

# Function definition is here 

sum = lambda arg1, arg2: arg1 + arg2; 

# Now you can call sum as a function 

print "Value of total : ", sum( 10, 20 ) 

print "Value of total : ", sum( 20, 20 ) 

When the above code is executed, it produces the following result − 

Value of total:  30 

Value of total:  40 

The return Statement: The statement return [expression] exits a function, optionally passing back 

an expression to the caller. A return statement with no arguments is the same as return None. 

All the above examples are not returning any value. You can return a value from a function as 

follows − 



# Function definition is here 

def sum( arg1, arg2 ): 

   # Add both the parameters and return them." 

   total = arg1 + arg2 

   print "Inside the function : ", total 

   return total; 

 

# Now you can call sum function 

total = sum(10, 20 ); 

print "Outside the function : ", total  

When the above code is executed, it produces the following result − 

Inside the function:  30 

Outside the function:  30 

Example: Add 10 to argument a, and return the result 

x = lambda a: a + 10 

print(x(5))   Result: 15 

Lambda functions can take any number of arguments: 

Example: Multiply argument a with argument b and return the result: 

x = lambda a, b: a * b 

print(x(5, 6))   Result: 30 

Example: Summarize argument a, b, and c and return the result: 

x = lambda a, b, c : a + b + c 

print(x(5, 6, 2))  Result: 13 

a) Why Use Lambda Functions?: The power of lambda is better shown when you use them as an 

anonymous function inside another function.  

Say you have a function definition that takes one argument, and that argument will be multiplied 

with an unknown number: 

def myfunc(n): 

  return lambda a : a * n 

Use function definition to make a function that always doubles the number you send in: 

def myfunc(n): 

  return lambda a : a * n 

mydoubler = myfunc(2) 

print(mydoubler(11))   Result: 22 

Or, use the same function definition to make a function that always triples the number you send in: 

def myfunc(n): 

  return lambda a : a * n 



mytripler = myfunc(3) 

print(mytripler(11))   Result: 33 

Or, use the same function definition to make both functions, in the same program: 

def myfunc(n): 

  return lambda a : a * n 

 

mydoubler = myfunc(2) 

mytripler = myfunc(3) 

print(mydoubler(11)) 

print(mytripler(11))   Result: 22, 33 

Use lambda functions when an anonymous function is required for a short period of time. 

Scope of Variables 

A variable is only available from inside the region it is created. This is called scope. Variables in a 

program may not be accessible at all locations in that program. This depends on where you have 

declared a variable. 

The scope of a variable determines the portion of the program where you can access a particular 

identifier. There are two basic scopes of variables in Python − 

• Global variables 

• Local variables 

1. Global vs. Local variables: Variables that are defined inside a function body have a local 

scope, and those defined outside have a global scope. 

This means that local variables can be accessed only inside the function in which they are 

declared, whereas global variables can be accessed throughout the program body by all functions. 

When you call a function, the variables declared inside it are brought into scope. Following is a 

simple example − 

total = 0; # This is global variable. 

# Function definition is here 

def sum( arg1, arg2 ): 

   # Add both the parameters and return them." 

   total = arg1 + arg2; # Here total is local variable. 

   print "Inside the function local total : ", total 

   return total; 

# Now you can call sum function 

sum( 10, 20 ); 

print "Outside the function global total : ", total  

When the above code is executed, it produces the following result − 

Inside the function local total:  30 

Outside the function global total:  0 

2. Local Scope: A variable created inside a function belongs to the local scope of that function, 

and can only be used inside that function. 



Example: A variable created inside a function is available inside that function 

def myfunc(): 

  x = 300 

  print(x) 

myfunc() 

Result: 300  

3. Function Inside Function: As explained in the example above, the variable x is not available 

outside the function, but it is available for any function inside the function. 

Example: The local variable can be accessed from a function within the function 

def myfunc(): 

  x = 300 

  def myinnerfunc(): 

    print(x) 

  myinnerfunc() 

myfunc() 

Result: 300  

4. Global Scope: A variable created in the main body of the Python code is a global variable and 

belongs to the global scope. 

Global variables are available from within any scope, global and local. 

Example: A variable created outside of a function is global and can be used by anyone 

x = 300 

def myfunc(): 

  print(x) 

myfunc() 

print(x) 

Result: 300,  300 

5. Naming Variables: If you operate with the same variable name inside and outside of a 

function, Python will treat them as two separate variables, one available in the global scope 

(outside the function) and one available in the local scope (inside the function) 

Example: The function will print the local x, and then the code will print the global x 

x = 300 

def myfunc(): 

  x = 200 

  print(x) 

myfunc() 

print(x) 

Result: 200,  300  



6. Global Keyword: If you need to create a global variable, but are stuck in the local scope, you 

can use the global keyword. The global keyword makes the variable global. 

Example: If you use the global keyword, the variable belongs to the global scope 

def myfunc(): 

  global x 

  x = 300 

myfunc() 

print(x) 

Result: 300  

Also, use the global keyword if you want to make a change to a global variable inside a function. 

Example: To change the value of a global variable inside a function, refer to the variable by using 

the global keyword 

x = 300 

def myfunc(): 

  global x 

  x = 200 

myfunc() 

print(x) 

Result: 200  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-6 (MODULES) 

Python Modules 

A module allows you to logically organize your Python code. Grouping related code into a 

module makes the code easier to understand and use.  

Simply, a module is a file consisting of Python code. A module can define functions, classes and 

variables. A module can also include runnable code. 

Consider a module to be the same as a code library. A file containing a set of functions you want to 

include in your application. 

1 Create a Module: To create a module just save the code you want in a file with the file 

extension .py: 

Example: Save this code in a file named mymodule.py 

def greeting(name): 

  print("Hello, " + name) 

Example: Here's an example of a simple module, support.py 

def print_func( par ): 

   print "Hello : ", par 

   return 

 

2. Use a Module: Now we can use the module we just created, by using the import statement. 

The import Statement: You can use any Python source file as a module by executing an import 

statement in some other Python source file. The import has the following syntax − 

import module1[, module2[,... moduleN] 

When the interpreter encounters an import statement, it imports the module if the module is 

present in the search path. A search path is a list of directories that the interpreter searches before 

importing a module.  

Example: Import the module named mymodule, and call the greeting function: 

import mymodule 

mymodule.greeting("Jonathan") 

 

Note: When using a function from a module, use the            syntax: module_name.function_name. 

For example, to import the module support.py, you need to put the following command at the top 

of the script − 

# Import module support 

import support 

 

# Now you can call defined function that module as follows 

support.print_func("Zara") 

When the above code is executed, it produces the following result − 

Hello : Zara 



A module is loaded only once, regardless of the number of times it is imported. This prevents the 

module execution from happening over and over again if multiple imports occur. 

3. The from...import Statement: Python's from statement lets you import specific attributes from a 

module into the current namespace. The from...import has the following syntax − 

from modname import name1[, name2[, ... nameN]] 

For example, to import the function fibonacci from the module fib, use the following statement − 

from fib import fibonacci 

This statement does not import the entire module fib into the current namespace; it just introduces 

the item fibonacci from the module fib into the global symbol table of the importing module. 

4. The from...import * Statement: It is also possible to import all names from a module into the 

current namespace by using the following import statement − 

from modname import * 

This provides an easy way to import all the items from a module into the current namespace; 

however, this statement should be used sparingly. 

5. Locating Modules: When you import a module, the Python interpreter searches for the module 

in the following sequences − 

• The current directory. 

• If the module isn't found, Python then searches each directory in the shell variable 

PYTHONPATH. 

• If all else fails, Python checks the default path. On UNIX, this default path is normally 

/usr/local/lib/python/. 

The module search path is stored in the system module sys as the sys.path variable. The sys.path 

variable contains the current directory, PYTHONPATH, and the installation-dependent default. 

6. The PYTHONPATH Variable: The PYTHONPATH is an environment variable, consisting of 

a list of directories. The syntax of PYTHONPATH is the same as that of the shell variable PATH. 

Here is a typical PYTHONPATH from a Windows system − 

set PYTHONPATH = c:\python20\lib; 

And here is a typical PYTHONPATH from a UNIX system − 

set PYTHONPATH = /usr/local/lib/python 

 

Variables in Modules 

The module can contain functions, as already described, but also variables of all types (arrays, 

dictionaries, objects etc): 

Example: Save this code in the file mymodule.py 

person1 = { 

  "name": "John", 

  "age": 36, 



  "country": "Norway" 

} 

Example: Import the module named mymodule, and access the person1 dictionary: 

import mymodule 

a = mymodule.person1["age"] 

print(a) 

Result: 36 

1. Re-naming a Module: You can create an alias when you import a module, by using 

the as keyword: 

Example: Create an alias for mymodule called mx: 

import mymodule as mx 

a = mx.person1["age"] 

print(a) 

Result: 36 

2. Built-in Modules: There are several built-in modules in Python, which you can import 

whenever you like. 

Example: Import and use the platform module: 

import platform 

x = platform.system() 

print(x) 

Result: Windows 

  

3. Namespaces and Scoping: Variables are names (identifiers) that map to objects. A namespace is 

a dictionary of variable names (keys) and their corresponding objects (values). 

A Python statement can access variables in a local namespace and in the global namespace. If a 

local and a global variable have the same name, the local variable shadows the global variable. 

Each function has its own local namespace. Class methods follow the same scoping rule as 

ordinary functions. 

Therefore, in order to assign a value to a global variable within a function, you must first use the 

global statement. The statement global VarName tells Python that VarName is a global variable. 

Python stops searching the local namespace for the variable. 

4. Using the dir() Function: There is a built-in function to list all the function names (or variable 

names) in a module. The dir() function: 

Example: List all the defined names belonging to the platform module: 

import platform 

x = dir(platform) 

print(x) 

 

The dir() built-in function returns a sorted list of strings containing the names defined by a 

module. The list contains the names of all the modules, variables and functions that are defined in 

a module. Following is a simple example – 

 



# Import built-in module math 

import math 

content = dir(math) 

print content 

When the above code is executed, it produces the following result − 

['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp', 

'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log', 

'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh'] 

Here, the special string variable __name__ is the module's name, and __file__ is the filename 

from which the module was loaded. 

Note: The dir() function can be used on all modules, also the ones you create yourself. 

5. The globals() and locals() Functions: The globals() and locals() functions can be used to 

return the names in the global and local namespaces depending on the location from where 

they are called. 

If locals() is called from within a function, it will return all the names that can be accessed locally 

from that function. 

If globals() is called from within a function, it will return all the names that can be accessed 

globally from that function. 

6. The reload() Function: When the module is imported into a script, the code in the top-level 

portion of a module is executed only once. 

Therefore, if you want to reexecute the top-level code in a module, you can use 

the reload() function. The reload() function imports a previously imported module again. The 

syntax of the reload() function is this − 

reload(module_name) 

Here, module_name is the name of the module you want to reload and not the string containing 

the module name. For example, to reload hello module, do the following − 

reload(hello) 

7. Import From Module: You can choose to import only parts from a module, by using 

the from keyword. 

Example: The module named mymodule has one function and one dictionary: 

def greeting(name): 

  print("Hello, " + name) 

 

person1 = { 

  "name": "John", 

  "age": 36, 

  "country": "Norway" } 

Example: Import only the person1 dictionary from the module: 

from mymodule import person1 

print (person1["age"]) 

 



When importing using the from keyword, do not use the module name when referring to elements 

in the module. Example: person1["age"], not mymodule.person1["age"] 

8. Packages in Python: A package is a hierarchical file directory structure that defines a single 

Python application environment that consists of modules and subpackages and sub-subpackages, 

and so on. 

Consider a file Pots.py available in Phone directory & has following line of code − 

def Pots(): 

   print "I'm Pots Phone" 

Similar way, we have another two files having different functions with the same name as above − 

• Phone/Isdn.py file having function Isdn() 

• Phone/G3.py file having function G3() 

Now, create one more file __init__.py in Phone directory – 

• Phone/__init__.py 

To make all of your functions available when you've imported Phone, you need to put explicit 

import statements in __init__.py as follows − 

from Pots import Pots 

from Isdn import Isdn 

from G3 import G3 

After you add these lines to __init__.py, you have all of these classes available when you import 

the Phone package. 

# Now import your Phone Package. 

import Phone 

Phone.Pots() 

Phone.Isdn() 

Phone.G3() 

When the above code is executed, it produces the following result − 

I'm Pots Phone 

I'm 3G Phone 

I'm ISDN Phone 

In the above example, we have taken example of a single function in each file, but you can keep 

multiple functions in your files. You can also define different Python classes in those files and 

then you can create your packages out of those classes. 

9. Python Dates: A date in Python is not a data type of its own, but we can import a module 

named datetime to work with dates as date objects. 

Example: Import the datetime module and display the current date 

import datetime 

x = datetime.datetime.now() 

print(x) 

Result: Displays current date & time 

10. Date Output: When we execute the code from the example above the result is 



   Current date & time 

 

The date contains year, month, day, hour, minute, second, and microsecond. The datetime module 

has many methods to return information about the date object.  

Example: Return the year and name of weekday 

import datetime 

x = datetime.datetime.now() 

print(x.year) 

print(x.strftime("%A")) 

Result: 2021,  Saturday  

11. Creating Date Objects: To create a date, we can use the datetime() class (constructor) of 

the datetime module. The datetime() class requires three parameters to create a date: year, 

month, day. 

Example: Create a date object 

import datetime 

x = datetime.datetime(2020, 5, 17) 

print(x) 

The datetime() class also takes parameters for time and timezone (hour, minute, second, 

microsecond, tzone), but they are optional, and has a default value of 0, (None for timezone). 

12. The strftime() Method: The datetime object has a method for formatting date objects into 

readable strings. The method is called strftime(), and takes one parameter, format, to specify 

the format of the returned string. 

Example: Display the name of the month 

import datetime 

x = datetime.datetime(2018, 6, 1) 

print(x.strftime("%B")) 

Result: June  

 

 

 

 

 

 

 

 



CHAPTER-7 (EXCEPTIONS) 

Python - Exception Handling 

A python program terminates as soon as it encounters an unhandled error. These errors can be 

classified into two classes: 

1. Syntax errors: Error caused by not following the proper structure (syntax) of the language is 

called syntax error or parsing error. 

If a>3 

Here a colon (:) is missing in the if statement. 

 

2. Logical errors (Exceptions): Errors that occur at runtime (after passing the syntax test) are 

called Exceptions or Logical errors  

Common exceptions: 

S.N. Exception Cause of error 

1. AssertionError Raised when an assert statement fails 

2. FileNotFoundError To open a file (for reading) that does not exist 

3. ImportError To import a module that does not exist   

4. MemoryError Raised when an operation runs out of memory 

5. OverflowError Raised when result of an arithmetic operation is too large 

6. SystemError Raised when interpreter detects internal error 

7. ZeroDivisionError To divide a number by zero   

Python provides two very important features to handle any unexpected error in your Python 

programs and to add debugging capabilities in them − 

• Exception Handling 

• Assertions 

Assertions in Python: An assertion is a sanity-check that you can turn on or turn off when you are 

done with your testing of the program. The easiest way to think of an assertion is to liken it to 

a raise-if statement. An expression is tested, and if the result comes up false, an exception is 

raised. Assertions are carried out by the assert statement, the newest keyword to Python, 

introduced in version 1.5. 

The assert Statement: When it encounters an assert statement, Python evaluates the accompanying 

expression, which is hopefully true. If the expression is false, Python raises 

an AssertionError exception. 

The syntax for assert is:     assert Expression[, Arguments] 

If the assertion fails, Python uses ArgumentExpression as the argument for the AssertionError. 

AssertionError exceptions can be caught and handled like any other exception using the try-except 

statement, but if not handled, they will terminate the program and produce a traceback. 



Example: Here is a function that converts a temperature from degrees Kelvin to degrees 

Fahrenheit. Since zero degrees Kelvin is as cold as it gets, the function bails out if it sees a 

negative temperature 

def KelvinToFahrenheit(Temperature): 

   assert (Temperature >= 0),"Colder than absolute zero!" 

   return ((Temperature-273)*1.8)+32 

print KelvinToFahrenheit(273) 

print int(KelvinToFahrenheit(505.78)) 

print KelvinToFahrenheit(-5) 

When the above code is executed, it produces the following result − 

32.0 

451 

Traceback (most recent call last): 

File "test.py", line 9, in <module> 

print KelvinToFahrenheit(-5) 

File "test.py", line 4, in KelvinToFahrenheit 

assert (Temperature >= 0),"Colder than absolute zero!" 

AssertionError: Colder than absolute zero! 

What is Exception? An exception is an event, which occurs during the execution of a program 

that disrupts the normal flow of the program's instructions. In general, when a Python script 

encounters a situation that it cannot cope with, it raises an exception. An exception is a Python 

object that represents an error. 

When a Python script raises an exception, it must either handle the exception immediately 

otherwise it terminates and quits. 

The try block lets you test a block of code for errors. 

The except block lets you handle the error. 

The finally block lets you execute code, regardless of the result of the try- and except blocks. 

Handling an exception: If you have some suspicious code that may raise an exception, you can 

defend your program by placing the suspicious code in a try: block. After the try: block, include 

an except: statement, followed by a block of code which handles the problem as elegantly as 

possible. 

When an error occurs, or exception as we call it, Python will normally stop and generate an error 

message. These exceptions can be handled using the try statement: 

Example: The try block will generate an exception, because x is not defined 

try: 

  print(x) 

except: 

  print("An exception occurred") 

Since the try block raises an error, the except block will be executed. Without the try block, the 

program will crash and raise an error: 

 

Example: This statement will raise an error, because x is not defined: 

print(x) 

 



Handling Exception using try....except...else block 

try: 

   You do your operations here; 

   ...................... 

except ExceptionI: 

   If there is ExceptionI, then execute this block. 

except ExceptionII: 

   If there is ExceptionII, then execute this block. 

   ...................... 

else: 

   If there is no exception then execute this block.  

Example: This example opens a file, writes content in the, file and comes out gracefully because 

there is no problem at all − 

try: 

   fh = open("testfile", "w") 

   fh.write("This is my test file for exception handling!!") 

except IOError: 

   print "Error: can\'t find file or read data" 

else: 

   print "Written content in the file successfully" 

   fh.close() 

This produces the following result −  Written content in the file successfully 

Example: This example tries to open a file where you do not have write permission, so it raises an 

exception − 

try: 

   fh = open("testfile", "r") 

   fh.write("This is my test file for exception handling!!") 

except IOError: 

   print "Error: can\'t find file or read data" 

else: 

   print "Written content in the file successfully" 

This produces the following result − Error: can't find file or read data 

The except Clause with Multiple Exceptions: You can also use the same except statement to 

handle multiple exceptions as follows − 

try: 

   You do your operations here; 

   ...................... 

except(Exception1[, Exception2[,...ExceptionN]]]): 

   If there is any exception from the given exception list, then execute this block. 

   ...................... 

else: 

   If there is no exception then execute this block.  

You can define as many exception blocks as you want, e.g. if you want to execute a special block 

of code for a special kind of error: 



Example: Print one message if the try block raises a NameError and another for other errors: 

try: 

  print(x) 

except NameError: 

  print("Variable x is not defined") 

except: 

  print("Something else went wrong") 

 

Result:  Variable x is not defined 

 

Else block: You can use the else keyword to define a block of code to be executed if no errors 

were raised: 

Example: In this example, the try block does not generate any error: 

try: 

  print("Hello") 

except: 

  print("Something went wrong") 

else: 

  print("Nothing went wrong") 

 

Result:  Hello 

 Nothing went wrong  

The try-finally clause: The finally block, if specified, will be executed regardless if the try block 

raises an error or not. 

Example:  

try: 

  print(x) 

except: 

  print("Something went wrong") 

finally: 

  print("The 'try except' is finished") 

 

Result:  Something went wrong 

  The 'try except' is finished 

This can be useful to close objects and clean up resources: 

Example: Try to open and write to a file that is not writable (i.e. read only file) 

try: 

  f = open("demofile.txt") 

  f.write("Lorum Ipsum") 

except: 

  print("Something went wrong when writing to the file") 

finally: 

  f.close() 

 

Result:   Something went wrong when writing to the file 



You can use a finally: block along with a try: block. The finally block is a place to put any code 

that must execute, whether the try-block raised an exception or not. The syntax of the try-finally 

statement is this − 

try: 

   You do your operations here; 

   ...................... 

   Due to any exception, this may be skipped. 

finally: 

   This would always be executed. 

   ...................... 

You cannot use else clause as well along with a finally clause. 

Example: 

try: 

   fh = open("testfile", "w") 

   fh.write("This is my test file for exception handling!!") 

finally: 

   print "Error: can\'t find file or read data" 

If you do not have permission to open the file in writing mode, then this will produce the 

following result − Error: can't find file or read data 

Same example can be written more clearly as follows − 

try: 

   fh = open("testfile", "w") 

   try: 

      fh.write("This is my test file for exception handling!!") 

   finally: 

      print "Going to close the file" 

      fh.close() 

except IOError: 

   print "Error: can\'t find file or read data" 

Result: Going to close the file  

When an exception is thrown in the try block, the execution immediately passes to 

the finally block. After all the statements in the finally block are executed, the exception is raised 

again and is handled in the except statements if present in the next higher layer of the try-

except statement. 

Raise an exception:  

As a Python developer you can choose to throw an exception if a condition occurs. To throw (or 

raise) an exception, use the raise keyword. 

Example: Raise an error and stop the program if x is lower than 0: 

x = -1 

if x < 0: 

  raise Exception("Sorry, no numbers below zero") 

Result:  Sorry, no numbers below zero   



The raise keyword is used to raise an exception. You can define what kind of error to raise, and the 

text to print to the user. 

Example: Raise a TypeError if x is not an integer: 

x = "hello" 

if not type(x) is int: 

  raise TypeError("Only integers are allowed") 

Result:   TypeError:  Only integers are allowed 

You can raise exceptions in several ways by using the raise statement. The general syntax for 

the raise statement is as follows. 

Syntax:    raise [Exception [, args [, traceback]]] 

Here, Exception is the type of exception (for example, NameError) and argument is a value for the 

exception argument. The argument is optional; if not supplied, the exception argument is None. 

The final argument, traceback, is also optional (and rarely used in practice), and if present, is the 

traceback object used for the exception. 

Example: An exception can be a string, a class or an object. Most of the exceptions that the Python 

core raises are classes, with an argument that is an instance of the class. Defining new exceptions is 

quite easy and can be done as follows − 

def functionName( level ): 

   if level < 1: 

      raise "Invalid level!", level 

      # The code below to this would not be executed 

      # if we raise the exception 

Note: In order to catch an exception, an "except" clause must refer to the same exception thrown 

either class object or simple string. For example, to capture above exception, we must write the 

except clause as follows – 

try: 

   Business Logic here... 

except "Invalid level!": 

   Exception handling here... 

else: 

   Rest of the code here... 

User-Defined Exceptions 

Python also allows you to create your own exceptions by deriving classes from the standard built-

in exceptions. 

Here is an example related to RuntimeError. Here, a class is created that is subclassed 

from RuntimeError. This is useful when you need to display more specific information when an 

exception is caught. 

In the try block, the user-defined exception is raised and caught in the except block. The variable 

e is used to create an instance of the class Networkerror. 

class Networkerror(RuntimeError): 



   def __init__(self, arg): 

      self.args = arg 

So once you defined above class, you can raise the exception as follows − 

try: 

   raise Networkerror("Bad hostname") 

except Networkerror,e: 

   print e.args 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-8 (INPUT AND OUTPUT) 

Reading Keyboard Input 

Python allows for user input. That means we are able to ask the user for input. Python 3.6 uses 

the input() method. Python 2.7 uses the raw_input() method. The following example asks for the 

username, and when you entered the username, it gets printed on the screen. 

 

Python provides two built-in functions to read a line of text from standard input, which by default 

comes from the keyboard. These functions are − 

• raw_input 

• input 

The raw_input Function: The raw_input([prompt]) function reads one line from standard input and 

returns it as a string (removing the trailing newline). 

str = raw_input("Enter your input: ") 

print "Received input is : ", str 

This prompts you to enter any string and it would display same string on the screen. When I typed 

"Hello Python!", its output is like this − 

Enter your input:  Hello Python 

Received input is: Hello Python 

The input Function: The input([prompt]) function is equivalent to raw_input, except that it 

assumes the input is a valid Python expression and returns the evaluated result to you. 

str = input("Enter your input: ") 

print "Received input is : ", str 

This would produce the following result against the entered input − 

Enter your input: [x*5 for x in range(2,10,2)] 

Received input is:  [10, 20, 30, 40] 

Printing to the Screen 

The simplest way to produce output is using the print statement where you can pass zero or more 

expressions separated by commas. This function converts the expressions you pass into a string 

and writes the result to standard output as follows − 

print "Python is really a great language,", "isn't it?" 

This produces the following result on your standard screen − 

Python is really a great language, isn't it? 

String format() 

The format() method allows you to format selected parts of a string. Sometimes there are parts of a 

text that you do not control, maybe they come from a database, or user input? To control such 

values, add placeholders (curly brackets {}) in the text, and run the values through 

the format() method: 

 



Example: Add a placeholder where you want to display the price: 

price = 49 

txt = "The price is {} dollars" 

print(txt.format(price)) 

Result: The price is 49 dollars  

You can add parameters inside the curly brackets to specify how to convert the value: 

Example: Format the price to be displayed as a number with two decimals: 

txt = "The price is {:.2f} dollars" 

Result: The price is 49.00 dollars  

 

Multiple Values 

If you want to use more values, just add more values to the format() method and add more 

placeholders. 

print(txt.format(price, itemno, count)) 

Example:    quantity = 3 

itemno = 567 

price = 49 

myorder = "I want {} pieces of item number {} for {:.2f} dollars." 

print(myorder.format(quantity, itemno, price)) 

Result: I want 3 pieces of item number 567 for 49.00 dollars.  

 

Index Numbers 

You can use index numbers (a number inside the curly brackets {0}) to be sure the values are 

placed in the correct placeholders. 

Example:  quantity = 3 

itemno = 567 

price = 49 

myorder = "I want {0} pieces of item number {1} for {2:.2f} dollars." 

print(myorder.format(quantity, itemno, price)) 

Also, if you want to refer to the same value more than once, use the index number. 

Example:  age = 36 

name = "John" 

txt = "His name is {1}. {1} is {0} years old." 

print(txt.format(age, name)) 

Named Indexes 

You can also use named indexes by entering a name inside the curly brackets {carname}  but then 

you must use names when you pass the parameter values txt.format(carname = "Ford"). 

Example:  myorder = "I have a {carname}, it is a {model}." 

print(myorder.format(carname = "Ford", model = "Mustang")) 



Opening and Closing Files 

Python provides basic functions and methods necessary to manipulate files by default. You can do 

most of the file manipulation using a file object. 

The open Function: Before you can read or write a file, you have to open it using Python's built-

in open() function. This function creates a file object, which would be utilized to call other support 

methods associated with it. 

Syntax:    file object = open(file_name [, access_mode][, buffering]) 

Here are parameter details − 

• file_name − The file_name argument is a string value that contains the name of the file 

that you want to access. 

• access_mode − The access_mode determines the mode in which the file has to be opened, 

i.e., read, write, append, etc. A complete list of possible values is given below in the table. 

This is optional parameter and the default file access mode is read (r). 

• buffering − If the buffering value is set to 0, no buffering takes place. If the buffering 

value is 1, line buffering is performed while accessing a file. If you specify the buffering 

value as an integer greater than 1, then buffering action is performed with the indicated 

buffer size. If negative, the buffer size is the system default(default behavior). 

Here is a list of the different modes of opening a file − 

S.N. Modes & Description 

1 
r : Opens a file for reading only. The file pointer is placed at the beginning of the file. This 

is the default mode. 

2 
rb : Opens a file for reading only in binary format. The file pointer is placed at the 

beginning of the file. This is the default mode. 

3 
r+ : Opens a file for both reading and writing. The file pointer placed at the beginning of 

the file. 

4 
rb+ : Opens a file for both reading and writing in binary format. The file pointer placed at 

the beginning of the file. 

5 
w : Opens a file for writing only. Overwrites the file if the file exists. If the file does not 

exist, creates a new file for writing. 

6 
wb : Opens a file for writing only in binary format. Overwrites the file if the file exists. If 

the file does not exist, creates a new file for writing. 

7 
w+ : Opens a file for both writing and reading. Overwrites the existing file if the file exists. 

If the file does not exist, creates a new file for reading and writing. 



8 
wb+ : Opens a file for both writing and reading in binary format. Overwrites the existing 

file if the file exists. If the file does not exist, creates a new file for reading and writing. 

9 
a : Opens a file for appending. The file pointer is at the end of the file if the file exists. 

That is, the file is in the append mode. If the file does not exist, it creates a new file for 

writing. 

10 
ab : Opens a file for appending in binary format. The file pointer is at the end of the file if 

the file exists. That is, the file is in the append mode. If the file does not exist, it creates a 

new file for writing. 

11 
a+ : Opens a file for both appending and reading. The file pointer is at the end of the file if 

the file exists. The file opens in the append mode. If the file does not exist, it creates a new 

file for reading and writing. 

12 
ab+ : Opens a file for both appending and reading in binary format. The file pointer is at 

the end of the file if the file exists. The file opens in the append mode. If the file does not 

exist, it creates a new file for reading and writing. 

The file Object Attributes:  Once a file is opened and you have one file object, you can get various 

information related to that file. 

Here is a list of all attributes related to file object − 

SN. Attribute & Description 

1 
file.closed : Returns true if file is closed, false otherwise. 

2 
file.mode : Returns access mode with which file was opened. 

3 
file.name : Returns name of the file. 

4 
file.softspace : Returns false if space explicitly required with print, true otherwise. 

Example:  

# Open a file 

fo = open("foo.txt", "wb") 

print "Name of the file: ", fo.name 

print "Closed or not : ", fo.closed 

print "Opening mode : ", fo.mode 

print "Softspace flag : ", fo.softspace 

This produces the following result − 

Name of the file:  foo.txt 

Closed or not :  False 

Opening mode :  wb 

Softspace flag :  0 



The close() Method: The close() method of a file object flushes any unwritten information and 

closes the file object, after which no more writing can be done. Python automatically closes a file 

when the reference object of a file is reassigned to another file. It is a good practice to use the 

close() method to close a file. 

Syntax:  fileObject.close() 

Example:  

# Open a file 

fo = open("foo.txt", "wb") 

print "Name of the file: ", fo.name 

# Close opened file 

fo.close() 

This produces the following result − 

Name of the file:  foo.txt 

The read() Method: The read() method reads a string from an open file. It is important to note that 

Python strings can have binary data apart from text data. 

Syntax:   fileObject.read([count]) 

Here, passed parameter is the number of bytes to be read from the opened file. This method starts 

reading from the beginning of the file and if count is missing, then it tries to read as much as 

possible, maybe until the end of file. 

Example: Let's take a file foo.txt, which we created as: 

Python is a great language. 

Yeah its great!! 

# Open a file 

fo = open("foo.txt", "r+") 

str = fo.read(10); 

print "Read String is : ", str 

# Close opened file 

fo.close() 

This produces the following result − 

Read String is :  Python is 

Open a File on the Server: Assume we have the following file, located in the same folder as 

Python: 

demofile.txt 

Hello! Welcome to demofile.txt 

This file is for testing purposes. 

Good Luck! 

To open the file, use the built-in open() function. The open() function returns a file object, which 

has a read() method for reading the content of the file: 



Example 

f = open("demofile.txt", "r") 

print(f.read()) 

If the file is located in a different location, you will have to specify the file path, like this: 

Example:  Open a file on a different location: 

f = open("D:\\myfiles\welcome.txt", "r") 

print(f.read()) 

Read Only Parts of the File: By default the read() method returns the whole text, but you can 

also specify how many characters you want to return: 

Example: Return the 5 first characters of the file: 

f = open("demofile.txt", "r") 

print(f.read(5)) 

Read Lines: You can return one line by using the readline() method: 

Example: Read one line of the file: 

f = open("demofile.txt", "r") 

print(f.readline()) 

By calling readline() two times, you can read the two first lines: 

Example: Read two lines of the file: 

f = open("demofile.txt", "r") 

print(f.readline()) 

print(f.readline()) 

By looping through the lines of the file, you can read the whole file, line by line: 

Example: Loop through the file line by line: 

f = open("demofile.txt", "r") 

for x in f: 

  print(x) 

Close Files: It is a good practice to always close the file when you are done with it. 

Example: Close the file when you are finish with it: 

f = open("demofile.txt", "r") 

print(f.readline()) 

f.close() 

Note: You should always close your files, in some cases, due to buffering, changes made to a file 

may not show until you close the file. 



The write() Method: The write() method writes any string to an open file. It is important to note 

that Python strings can have binary data and not just text. The write() method does not add a 

newline character ('\n') to the end of the string − 

Syntax:  fileObject.write(string).  Here, passed parameter is the content to be written into the 

opened file.  

# Open a file 

fo = open("foo.txt", "wb") 

fo.write( "Python is a great language.\nYeah its great!!\n") 

 

# Close opened file 

fo.close() 

The above method would create foo.txt file and would write given content in that file and finally it 

would close that file. If you would open this file, it would have following content. 

Python is a great language. 

Yeah its great!! 

File Positions: The tell() method tells you the current position within the file; in other words, the 

next read or write will occur at that many bytes from the beginning of the file. 

The seek(offset[, from]) method changes the current file position. The offset argument indicates 

the number of bytes to be moved. The from argument specifies the reference position from where 

the bytes are to be moved. 

If from is set to 0, it means use the beginning of the file as the reference position and 1 means use 

the current position as the reference position and if it is set to 2 then the end of the file would be 

taken as the reference position. 

Example: Let us take a file foo.txt, which we created above. 

# Open a file 

fo = open("foo.txt", "r+") 

str = fo.read(10) 

print "Read String is : ", str 

 

# Check current position 

position = fo.tell() 

print "Current file position : ", position 

 

# Reposition pointer at the beginning once again 

position = fo.seek(0, 0); 

str = fo.read(10) 

print "Again read String is : ", str 

# Close opend file 

fo.close() 

This produces the following result − 

Read String is :  Python is 

Current file position :  10 

Again read String is :  Python is 



Renaming and Deleting Files:  Python os module provides methods that help you perform file-

processing operations, such as renaming and deleting files. To use this module you need to import 

it first and then you can call any related functions. 

The rename() Method: The rename() method takes two arguments, the current filename and the 

new filename. 

Syntax:  os.rename(current_file_name, new_file_name) 

Example: Following is the example to rename an existing file test1.txt − 

import os 

 

# Rename a file from test1.txt to test2.txt 

os.rename( "test1.txt", "test2.txt" ) 

The remove() Method: You can use the remove() method to delete files by supplying the name of 

the file to be deleted as the argument. 

Syntax:  os.remove(file_name) 

Example:  Following is the example to delete an existing file test2.txt − 

import os 

 

# Delete file test2.txt 

os.remove("text2.txt") 

Directories in Python: All files are contained within various directories, and Python has no 

problem handling these too. The os module has several methods that help you create, remove, and 

change directories. 

The mkdir() Method: You can use the mkdir() method of the os module to create directories in the 

current directory. You need to supply an argument to this method which contains the name of the 

directory to be created. 

Syntax:   os.mkdir("newdir") 

Example:  Following is the example to create a directory test in the current directory − 

import os 

 

# Create a directory "test" 

os.mkdir("test") 

The chdir() Method: You can use the chdir() method to change the current directory. The chdir() 

method takes an argument, which is the name of the directory that you want to make the current 

directory. 

Syntax:  os.chdir("newdir") 

Example: Following is the example to go into "/home/newdir" directory − 



import os 

 

# Changing a directory to "/home/newdir" 

os.chdir("/home/newdir") 

The getcwd() Method: The getcwd() method displays the current working directory. 

Syntax:   os.getcwd() 

Example:  Following is the example to give current directory − 

import os 

 

# This would give location of the current directory 

os.getcwd() 

The rmdir() Method: The rmdir() method deletes the directory, which is passed as an argument in 

the method. Before removing a directory, all the contents in it should be removed. 

Syntax:  os.rmdir('dirname') 

Example: Following is the example to remove "/tmp/test" directory. It is required to give fully 

qualified name of the directory, otherwise it would search for that directory in the current 

directory. 

import os 

 

# This would  remove "/tmp/test"  directory. 

os.rmdir( "/tmp/test"  ) 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-9 (CLASSES IN PYTHON) 

Python has been an object-oriented language since it existed. Because of this, creating and using 

classes and objects are downright easy.  

Overview of OOP Terminology: 

• Class – A user-defined prototype for an object that defines a set of attributes that 

characterize any object of the class. The attributes are data members (class variables and 

instance variables) and methods, accessed via dot notation. 

• Class variable – A variable that is shared by all instances of a class. Class variables are 

defined within a class but outside any of the class’s methods. Class variables are not used 

as frequently as instance variables are. 

• Data member – A class variable or instance variable that holds data associated with a 

class and its objects. 

• Function overloading – The assignment of more than one behaviour to a particular 

function. The operation performed varies by the types of objects or arguments involved. 

• Instance variable – A variable that is defined inside a method and belongs only to the 

current instance of a class. 

• Inheritance – The transfer of the characteristics of a class to other classes that are derived 

from it. 

• Instance – An individual object of a certain class. An object obj that belongs to a class 

Circle, for example, is an instance of the class Circle. 

• Instantiation – The creation of an instance of a class. 

• Method – A special kind of function that is defined in a class definition. 

• Object – A unique instance of a data structure that’s defined by its class. An object 

comprises both data members (class variables and instance variables) and methods. 

• Operator overloading – The assignment of more than one function to a particular 

operator. 

Creating Classes: 

The class statement creates a new class definition. The name of the class immediately follows the 

keyword class followed by a colon as follows − 

class ClassName: 

   'Optional class documentation string' 

   class_suite 

• The class has a documentation string, which can be accessed via ClassName.__doc__. 

• The class_suite consists of all the component statements defining class members, data 

attributes and functions. 

Following is the example of a simple Python class − 

class Employee: 

   'Common base class for all employees' 

   empCount = 0 

 

   def __init__(self, name, salary): 

      self.name = name 



      self.salary = salary 

      Employee.empCount += 1 

    

   def displayCount(self): 

     print "Total Employee %d" % Employee.empCount 

 

   def displayEmployee(self): 

      print "Name : ", self.name,  ", Salary: ", self.salary 

• The variable empCount is a class variable whose value is shared among all instances of a 

this class. This can be accessed as Employee.empCount from inside the class or outside the 

class. 

• The first method __init__() is a special method, which is called class constructor or 

initialization method that Python calls when you create a new instance of this class. 

• You declare other class methods like normal functions with the exception that the first 

argument to each method is self. Python adds the self argument to the list for you; you do 

not need to include it when you call the methods. 

Creating Instance Objects: 

To create instances of a class, you call the class using class name and pass in whatever arguments 

its __init__ method accepts. 

“This would create first object of Employee class” 

emp1 = Employee(“Zara”, 2000) 

“This would create second object of Employee class” 

emp2 = Employee(“Manni”, 5000) 

Accessing Attributes: 

You access the object's attributes using the dot operator with object. Class variable would be 

accessed using class name as follows − 

emp1.displayEmployee() 

emp2.displayEmployee() 

print "Total Employee %d" % Employee.empCount 

Now, putting all the concepts together − 

class Employee: 

   'Common base class for all employees' 

   empCount = 0 

 

   def __init__(self, name, salary): 

      self.name = name 

      self.salary = salary 

      Employee.empCount += 1 

    

   def displayCount(self): 

     print "Total Employee %d" % Employee.empCount 

 

   def displayEmployee(self): 

      print "Name : ", self.name,  ", Salary: ", self.salary 

"This would create first object of Employee class" 

emp1 = Employee("Zara", 2000) 



"This would create second object of Employee class" 

emp2 = Employee("Manni", 5000) 

emp1.displayEmployee() 

emp2.displayEmployee() 

print "Total Employee %d" % Employee.empCount 

When the above code is executed, it produces the following result − 

Name :  Zara ,Salary:  2000 

Name :  Manni ,Salary:  5000 

Total Employee 2 

You can add, remove, or modify attributes of classes and objects at any time − 

emp1.age = 7  # Add an 'age' attribute. 

emp1.age = 8  # Modify 'age' attribute. 

del emp1.age  # Delete 'age' attribute. 

Instead of using the normal statements to access attributes, you can use the following functions: 

• The getattr(obj, name[, default]) − to access the attribute of object. 

• The hasattr(obj,name) − to check if an attribute exists or not. 

• The setattr(obj,name,value) − to set an attribute. If attribute does not exist, then it would 

be created. 

• The delattr(obj, name) − to delete an attribute. 

hasattr(emp1, 'age')    # Returns true if 'age' attribute exists 

getattr(emp1, 'age')    # Returns value of 'age' attribute 

setattr(emp1, 'age', 8) # Set attribute 'age' at 8 

delattr(empl, 'age')    # Delete attribute 'age' 

Built-In Class Attributes: 

Every Python class keeps following built-in attributes and they can be accessed using dot operator 

like any other attribute − 

• __dict__ − Dictionary containing the class's namespace. 

• __doc__ − Class documentation string or none, if undefined. 

• __name__ − Class name. 

• __module__ − Module name in which the class is defined. This attribute is "__main__" in 

interactive mode. 

• __bases__ − A possibly empty tuple containing the base classes, in the order of their 

occurrence in the base class list. 

For the above class let us try to access all these attributes − 

class Employee: 

   'Common base class for all employees' 

   empCount = 0 

 

   def __init__(self, name, salary): 

      self.name = name 

      self.salary = salary 

      Employee.empCount += 1 

    



   def displayCount(self): 

     print "Total Employee %d" % Employee.empCount 

 

   def displayEmployee(self): 

      print "Name : ", self.name,  ", Salary: ", self.salary 

 

print "Employee.__doc__:", Employee.__doc__ 

print "Employee.__name__:", Employee.__name__ 

print "Employee.__module__:", Employee.__module__ 

print "Employee.__bases__:", Employee.__bases__ 

print "Employee.__dict__:", Employee.__dict__ 

When the above code is executed, it produces the following result − 

Employee.__doc__: Common base class for all employees 

Employee.__name__: Employee 

Employee.__module__: __main__ 

Employee.__bases__: () 

Employee.__dict__: {'__module__': '__main__', 'displayCount': 

<function displayCount at 0xb7c84994>, 'empCount': 2,  

'displayEmployee': <function displayEmployee at 0xb7c8441c>,  

'__doc__': 'Common base class for all employees',  

'__init__': <function __init__ at 0xb7c846bc>} 

Class Inheritance: 

Instead of starting from scratch, you can create a class by deriving it from a 86re-existing class by 

listing the parent class in parentheses after the new class name. 

The child class inherits the attributes of its parent class, and you can use those attributes as if they 

were defined in the child class. A child class can also override data members and methods from 

the parent. 

Syntax: Derived classes are declared much like their parent class; however, a list of base classes to 

inherit from is given after the class name − 

class SubClassName (ParentClass1[, ParentClass2, ...]): 

   'Optional class documentation string' 

   class_suite 

Example 

class Parent:        # define parent class 

   parentAttr = 100 

   def __init__(self): 

      print "Calling parent constructor" 

 

   def parentMethod(self): 

      print 'Calling parent method' 

 

   def setAttr(self, attr): 

      Parent.parentAttr = attr 

 

   def getAttr(self): 

      print "Parent attribute :", Parent.parentAttr 



 

class Child(Parent): # define child class 

   def __init__(self): 

      print "Calling child constructor" 

 

   def childMethod(self): 

      print 'Calling child method' 

 

c = Child()          # instance of child 

c.childMethod()      # child calls its method 

c.parentMethod()     # calls parent's method 

c.setAttr(200)       # again call parent's method 

c.getAttr()          # again call parent's method 

When the above code is executed, it produces the following result − 

Calling child constructor;  Calling child method;  Calling parent method;  Parent attribute : 200 

Similar way, you can drive a class from multiple parent classes as follows − 

class A:        # define your class A 

..... 

class B:         # define your class B 

..... 

class C(A, B):   # subclass of A and B 

..... 

You can use issubclass() or isinstance() functions to check a relationships of two classes and 

instances. 

• The issubclass(sub, sup) boolean function returns true if the given subclass sub is indeed 

a subclass of the superclass sup. 

• The isinstance(obj, Class) boolean function returns true if obj is an instance of 

class Class or is an instance of a subclass of Class 

Overriding Methods: 

You can always override your parent class methods. One reason for overriding parent's methods is 

because you may want special or different functionality in your subclass. 

Example 

class Parent:        # define parent class 

   def myMethod(self): 

      print 'Calling parent method' 

 

class Child(Parent): # define child class 

   def myMethod(self): 

      print 'Calling child method' 

 

c = Child()          # instance of child 

c.myMethod()         # child calls overridden method 

When the above code is executed, it produces the following result − 

Calling child method 



Overloading Operators: 

Suppose you have created a Vector class to represent two-dimensional vectors, what happens 

when you use the plus operator to add them? Most likely Python will yell at you. 

You could, however, define the __add__ method in your class to perform vector addition and then 

the plus operator would behave as per expectation − 

Example: 

class Vector: 

   def __init__(self, a, b): 

      self.a = a 

      self.b = b 

 

   def __str__(self): 

      return 'Vector (%d, %d)' % (self.a, self.b) 

    

   def __add__(self,other): 

      return Vector(self.a + other.a, self.b + other.b) 

 

v1 = Vector(2,10) 

v2 = Vector(5,-2) 

print v1 + v2 

When the above code is executed, it produces the following result − 

Vector(7,8) 

Data Hiding: 

An object's attributes may or may not be visible outside the class definition. You need to name 

attributes with a double underscore prefix, and those attributes then are not be directly visible to 

outsiders. 

Example: 

class JustCounter: 

   __secretCount = 0 

   

   def count(self): 

      self.__secretCount += 1 

      print self.__secretCount 

 

counter = JustCounter() 

counter.count() 

counter.count() 

print counter.__secretCount 

When the above code is executed, it produces the following result − 

1 

2 

Traceback (most recent call last): 

   File "test.py", line 12, in <module> 

      print counter.__secretCount 



AttributeError: JustCounter instance has no attribute '__secretCount' 

Python protects those members by internally changing the name to include the class name. You 

can access such attributes as object._className__attrName. If you would replace your last line as 

following, then it works for you − 

......................... 

print counter._JustCounter__secretCount 

When the above code is executed, it produces the following result − 

1 

2 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER-10 (REGULAR EXPRESSIONS) 

A regular expression is a special sequence of characters that helps you match or find other strings 

or sets of strings, using a specialized syntax held in a pattern. Regular expressions are widely used 

in UNIX world. 



The Python module re provides full support for Perl-like regular expressions in Python. The re 

module raises the exception re.error if an error occurs while compiling or using a regular 

expression. 

We would cover two important functions, which would be used to handle regular expressions. But 

a small thing first: There are various characters, which would have special meaning when they are 

used in regular expression. To avoid any confusion while dealing with regular expressions, we 

would use Raw Strings as r'expression'. 

The match Function:  This function attempts to match RE pattern to string with optional flags. 

Here is the syntax for this function − 

re.match(pattern, string, flags=0) 

Here is the description of the parameters − 

Sr.No. Parameter & Description 

1 
Pattern: This is the regular expression to be matched. 

2 
String: This is the string, which would be searched to match the pattern at the beginning 

of string. 

3 
Flags: You can specify different flags using bitwise OR (|). These are modifiers, which 

are listed in the table below. 

The re.match function returns a match object on success, None on failure. We use 

group(num) or groups() function of match object to get matched expression. 

Sr.No. Match Object Method & Description 

1 
group(num=0): This method returns entire match (or specific subgroup num) 

2 
groups(): This method returns all matching subgroups in a tuple (empty if there weren't 

any) 

Example: 

import re 

line = "Cats are smarter than dogs" 

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I) 

 

if matchObj: 

   print "matchObj.group() : ", matchObj.group() 

   print "matchObj.group(1) : ", matchObj.group(1) 

   print "matchObj.group(2) : ", matchObj.group(2) 

else: 



   print "No match!!" 

When the above code is executed, it produces following result − 

matchObj.group() :  Cats are smarter than dogs 

matchObj.group(1) :  Cats 

matchObj.group(2) :  smarter 

 

The search Function: This function searches for first occurrence of RE pattern within string with 

optional flags. 

Here is the syntax for this function − 

re.search(pattern, string, flags=0) 

Here is the description of the parameters − 

Sr.No. Parameter & Description 

1 
Pattern: This is the regular expression to be matched. 

2 
String: This is the string, which would be searched to match the pattern anywhere in the 

string. 

3 
Flags: You can specify different flags using bitwise OR (|). These are modifiers, which 

are listed in the table below. 

The re.search function returns a match object on success, none on failure. We 

use group(num) or groups() function of match object to get matched expression. 

Sr.No. Match Object Methods & Description 

1 
group(num=0): This method returns entire match (or specific subgroup num) 

2 
groups(): This method returns all matching subgroups in a tuple (empty if there weren't 

any) 

Example: 

import re 

 

line = "Cats are smarter than dogs"; 

 

searchObj = re.search( r'(.*) are (.*?) .*', line, re.M|re.I) 

 

if searchObj: 

   print "searchObj.group() : ", searchObj.group() 

   print "searchObj.group(1) : ", searchObj.group(1) 

   print "searchObj.group(2) : ", searchObj.group(2) 



else: 

   print "Nothing found!!" 

When the above code is executed, it produces following result − 

searchObj.group() :  Cats are smarter than dogs 

searchObj.group(1) :  Cats 

searchObj.group(2) :  smarter 

Matching Versus Searching: Python offers two different primitive operations based on regular 

expressions: match checks for a match only at the beginning of the string, while search checks for 

a match anywhere in the string (this is what Perl does by default). E.g. Live Demo 

import re 

line = "Cats are smarter than dogs"; 

matchObj = re.match( r'dogs', line, re.M|re.I) 

if matchObj: 

   print "match --> matchObj.group() : ", matchObj.group() 

else: 

   print "No match!!" 

 

searchObj = re.search( r'dogs', line, re.M|re.I) 

if searchObj: 

   print "search --> searchObj.group() : ", searchObj.group() 

else: 

   print "Nothing found!!" 

When the above code is executed, it produces the following result − 

No match!! 

search --> searchObj.group() :  dogs 

Search and Replace: One of the most important re methods that use regular expressions is sub. 

Syntax:  re.sub(pattern, repl, string, max=0) 

This method replaces all occurrences of the RE pattern in string with repl, substituting all 

occurrences unless max provided. This method returns modified string. E.g. Live Demo 

import re 

 

phone = "2004-959-559 # This is Phone Number" 

 

# Delete Python-style comments 

num = re.sub(r'#.*$', "", phone) 

print "Phone Num : ", num 

 

# Remove anything other than digits 

num = re.sub(r'\D', "", phone)     

print "Phone Num : ", num 

When the above code is executed, it produces the following result − 

Phone Num :  2004-959-559 

Phone Num :  2004959559 

http://tpcg.io/1VpZ8k
http://tpcg.io/jVaoEQ


Regular Expression Modifiers: Option Flags 

Regular expression literals may include an optional modifier to control various aspects of 

matching. The modifiers are specified as an optional flag. You can provide multiple modifiers 

using exclusive OR (|), as shown previously and may be represented by one of these − 

Sr.No. Modifier & Description 

1 
re.I:  Performs case-insensitive matching. 

2 
re.L: Interprets words according to the current locale. This interpretation affects the 

alphabetic group (\w and \W), as well as word boundary behavior(\b and \B). 

3 
re.M: Makes $ match the end of a line (not just the end of the string) and makes ^ match 

the start of any line (not just the start of the string). 

4 
re.S: Makes a period (dot) match any character, including a newline. 

5 
re.U: Interprets letters according to the Unicode character set. This flag affects the 

behavior of \w, \W, \b, \B. 

6 
re.X: Permits "cuter" regular expression syntax. It ignores whitespace (except inside a set 

[] or when escaped by a backslash) and treats unescaped # as a comment marker. 

Regular Expression Patterns: Except for control characters, (+ ? . * ^ $ ( ) [ ] { } | \), all 

characters match themselves. You can escape a control character by preceding it with a backslash. 

Following table lists the regular expression syntax that is available in Python − 

Sr.No. Pattern & Description 

1 
^   Matches beginning of line. 

2 
$  Matches end of line. 

3 
.  Matches any single character except newline. Using m option allows it to match newline 

as well. 

4 
[...]  Matches any single character in brackets. 

5 
[^...]  Matches any single character not in brackets 



6 
re*  Matches 0 or more occurrences of preceding expression. 

7 
re+  Matches 1 or more occurrence of preceding expression. 

8 
re?  Matches 0 or 1 occurrence of preceding expression. 

9 
re{ n}  Matches exactly n number of occurrences of preceding expression. 

10 
re{ n,}  Matches n or more occurrences of preceding expression. 

11 
re{ n, m}  Matches at least n and at most m occurrences of preceding expression. 

12 
a| b  Matches either a or b. 

13 
(re)  Groups regular expressions and remembers matched text. 

14 
(?#...) Comment. 

Regular Expression Examples:  

Literal characters: 

Sr.No. Example & Description 

1 
Python  Match "python". 

Character classes 

Sr.No. Example & Description 

1 
[Pp]ython: Match "Python" or "python" 

2 
rub[ye]: Match "ruby" or "rube" 

3 
[aeiou]: Match any one lowercase vowel 



4 
[0-9]: Match any digit; same as [0123456789] 

5 
[a-z]: Match any lowercase ASCII letter 

6 
[A-Z]: Match any uppercase ASCII letter 

7 
[a-zA-Z0-9]: Match any of the above 

8 
[^aeiou]: Match anything other than a lowercase vowel 

9 
[^0-9]: Match anything other than a digit 

Special Character Classes: 

Sr.No. Example & Description 

1 
.  Match any character except newline 

2 
\d  Match a digit: [0-9] 

3 
\D  Match a nondigit: [^0-9] 

4 
\s  Match a whitespace character: [ \t\r\n\f] 

5 
\S  Match nonwhitespace: [^ \t\r\n\f] 

6 
\w  Match a single word character: [A-Za-z0-9_] 

7 
\W  Match a nonword character: [^A-Za-z0-9_] 

 

 

Repetition Cases 

Sr.No. Example & Description 



1 
ruby?  Match "rub" or "ruby": the y is optional 

2 
ruby*  Match "rub" plus 0 or more ys 

3 
ruby+  Match "rub" plus 1 or more ys 

4 
\d{3}  Match exactly 3 digits 

5 
\d{3,}  Match 3 or more digits 

6 
\d{3,5}  Match 3, 4, or 5 digits 

Nongreedy repetition: This matches the smallest number of repetitions − 

Sr.No. Example & Description 

1 
<.*>  Greedy repetition: matches "<python>perl>" 

2 
<.*?>  Nongreedy: matches "<python>" in "<python>perl>" 

Alternatives 

Sr.No. Example & Description 

1 
python|perl:  Match "python" or "perl" 

2 
rub(y|le)): Match "ruby" or "ruble" 

3 
Python(!+|\?): "Python" followed by one or more ! or one ? 

 

Anchors: This needs to specify match position. 

Sr.No. Example & Description 



1 
^Python: Match "Python" at the start of a string or internal line 

2 
Python$: Match "Python" at the end of a string or line 

3 
\APython: Match "Python" at the start of a string 

4 
Python\Z: Match "Python" at the end of a string 

5 
\bPython\b: Match "Python" at a word boundary 

6 
\brub\B: \B is nonword boundary: match "rub" in "rube" and "ruby" but not alone 

7 
Python(?=!): Match "Python", if followed by an exclamation point. 

8 
Python(?!!): Match "Python", if not followed by an exclamation point. 

Special Syntax with Parentheses 

Sr.No. Example & Description 

1 
R(?#comment): Matches "R". All the rest is a comment 

2 
R(?i)uby: Case-insensitive while matching "uby" 

3 
R(?i:uby): Same as above 

4 
rub(?:y|le)): Group only without creating \1 backreference 

 


