G.P. Dhangar

Fluid Mechanics

By
Mrs. Sunita
Deptt. Of Civil Engg.

Pressure

- Pressure is the (compression) force exerted by a fluid per unit area.

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}\left(\frac{N}{m^{2}}\right) \equiv P a
$$

- Stress vs. pressure?
- In fluids, gases and liquids, we speak of pressure; in solids this is normal stress. For a fluid at rest, the pressure at a given point is the same in all directions.

- Differences or gradients in pressure drive a fluid flow, esparially in ducts and pipes.

Density

The density of a fluid is its mass per unit volume:

- Liquids are essentially incompressible
- Density is highly variable in gases nearly proportional to the pressure.

$@ 20^{\circ} \mathrm{C}, 1 \mathrm{~atm}$	Air	Water	Hydrogen	Mercury
Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1.20	998	0.0838	13,580

- Note: specific volume is defined as:

$$
v=\frac{V\left(m^{3}\right)}{m(k g)}=\frac{1}{\rho}
$$

Specific weight

- The specific weight of a fluid is its weight, , per unit volume. Density and specific weight are related by gravity:

$$
\gamma=\rho g\left(\frac{N}{m^{3}}\right)
$$

Specific gravity

Specific gravity is the ratio of a fluid density to a standard reference fluid, typically water at $4^{\circ} \mathrm{C}$ (for liquids) and air (for gases):

$$
\begin{gathered}
S G_{\text {gas }}=\frac{\mu_{\text {gas }}}{\rho_{\text {air }}}=\frac{\mu_{\text {gas }}}{1.205\left(\mathrm{~kg} / \mathrm{m}^{3}\right)} \\
S G_{\text {liquid }}=\frac{\rho_{\text {liquid }}}{\rho_{\text {waser }}}=\frac{\rho_{\text {litquid }}}{1000\left(\mathrm{~kg} / \mathrm{m}^{3}\right)}
\end{gathered}
$$

- For example, the specific gravity of mercury is $\mathrm{SG}_{\mathrm{Hg}}=13,580 / 1000$ $\mathbb{V} 13.6$.

Kinetic and potential energy

- Potential energy is the work required to move the system of mass m from the origin to a position against a gravity field g :

Kinetic energy is the work required to change the speed of the mass from zero to velocity V.

$$
K E=\frac{1}{2} m V^{2}
$$

Note: internal energy, u, is a function of temperature and pressure for the single-phase substance, whereas KE and PE are kinematic quantitie

Specific heat

- Specific heat capacity: is the measure of the heat energy required to increase the temperature of a unit mass of a substance by one degree temperature.
- Caluminum $=0.9(\mathrm{~kJ} / \mathrm{kg} . \mathrm{K})$ and $c_{\text {water }}=4.186$ ($\mathrm{kJ} / \mathrm{kg} . \mathrm{K}$)
- There are two types of specific heats, constant volume c_{v} and constant pressure c_{p}.

- Any equation that relates the pressure, temperature, and specific volume of a substance is called an equation of state.
- It is experimentally observed that at a low pressure the volume of a gas is
proportional to its temperature:

$$
p=\rho R T p=R_{u} \rho T
$$

R_{u} is the gas universal constant, $R_{u}=8.314$ ($\mathrm{kJ} / \mathrm{kmol} . \mathrm{K}$)
The constant R is different for each gas; for air, $\mathrm{R}_{\mathrm{air}}=0.287(\mathrm{~kJ} / \mathrm{kg} . K)$. The molecular weight of air $M=28.97 \mathrm{~kg} / \mathrm{kmol}$.

Properties of ideal gas

- For an ideal gas, internal energy is only a function of temperature; thus constant volume specific heat is only a function of temperature:

$$
\begin{gathered}
c_{v}=\left.\left(\frac{\partial u}{\partial T}\right)\right|_{v}=\frac{d u}{d T}=c_{v}(T) \\
d u=c_{v}(T) d T
\end{gathered}
$$

- For an ideal gas, enthalpy is only a function of temperature; $h=u+p v^{\bullet}$ The constant pressure specific heat can be defined as:

$$
\begin{gathered}
c_{p}=\left.\left(\frac{\partial h}{\partial T}\right)\right|_{p}=\frac{d h}{d T}=c_{p}(T) \\
d h=c_{p}(T) d T \\
R=c_{p}-c_{v}
\end{gathered}
$$

- The specific heat ratio is an important dimensionless parameter:

$$
k=\frac{c_{q}}{c_{v}}=k(T) \geq 1
$$

Incompressible fluids

- Liquids are (almost) incompressible and thus have a single constant specific heat:

$$
c_{p}=c_{v}=c \quad d h=c d T
$$

Viscosity

- Viscosity is a measure of a fluid's resistance to flow. It determines the fluid strain rate that is generated by a given applied shear stress.

- Temperature has a strong and pressure has a moderate effect on viscosity. The viscosity of gases and most liquids increases slowly with pressure.

$$
\begin{array}{rr}
\mu_{\text {hydirogen }}=9.0 E-6\left(\frac{\mathrm{~kg}}{\mathrm{~m} . \mathrm{s}}\right) \quad \mu_{\text {air }}=1.8 E-5\left(\frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}\right) \\
\mu_{\text {water }}=1.0 E-3\left(\frac{\mathrm{~kg}}{\mathrm{~ms}}\right) \quad \mu_{\text {engine oll,SAE30}}=0.20\left(\frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~g}}\right)
\end{array}
$$

Viscosity

- A Newtonian fluid has a linear relationship between shear stress and

- The no-slip condition: at the wall velocity is zero relative to the wall. This is a characteristic of all viscous fluid.
- The shear stress is proportional to the slope of the velocity profile and is greatest at the wall.

The Reynolds number

- The Reynolds number, Re, is a dimensionless number that gives a measure of

$$
R e=\frac{\rho V L}{\mu}=\frac{V L}{v}
$$

the ratio of inertial forces

to viscous forces

Creeping flow, Re is very low
Laminar flow, Re moderate
Turbulent flow, Re high

Thermal conductivity

- Rate of heat conduction is proportional to the temperature difference, but it is inversely proportional to the thickness of the layer

```
Rate of heat transfer }\propto\frac{(\mathrm{ surfacs area)(temperaturedifference)}}{\mathrm{ Wall thickness}
```


- To make this equality, $k(W / m . K)$ the thermal conductivity of the material, is introduced.
- This is called the Fourier's law of heat conduction:

$$
\begin{aligned}
q=\frac{Q}{A} & =-k \nabla T \\
q_{x}=-k \frac{\partial T}{\partial x}, \quad q_{y} & =-k \frac{\partial T}{\partial y}, \quad q_{z}=-k \frac{\partial T}{\partial z}
\end{aligned}
$$

Flow between parallel plates

- It is the flow induced between a fixed lower plate and upper plate moving steadily at velocity V

- Shear stress is constant throughout the fluid:

$$
\frac{d u}{d y}=\frac{\tau}{\mu}=\text { const. }
$$

- After integration and applying boundary conditions:

$u=v_{\bar{n}}^{y}$ Surface

tension

- A liquid, being unable to expand freely, will form an interface with a second liquid or gas.

- The cohesive forces between liquid molecules are responsible for the phenomenon known as surface tension.
- Surface tension Y (pronounced upsilon) has the dimension of force per unit length $(\mathrm{N} / \mathrm{m})$ or of energy per unit area $\left(\mathrm{J} / \mathrm{m}^{2}\right)$.
- $Y_{\text {air-water }}=0.073 \mathrm{~N} / \mathrm{m} ; Y_{\text {air-mercury }}=0.48 \mathrm{~N} / \mathrm{m}$

Surface tension

- Using a force balance, pressure increase in the interior of a liquid half cylinder droplet of length L and radius R is:

$$
2 R L \Delta p=2 \Upsilon L \text { or } \Delta p=\frac{\Upsilon}{R}
$$

- Contact angle θ appears when a liquid interface intersects with a solid surface.

$$
\theta=\left\{\begin{array}{l}
<90^{\circ} \quad \text { wetting liquid } \\
>90^{\circ} \text { nonwetting iiquid }
\end{array}\right.
$$

- Water is extremely wetting to a clean glass surface with $\theta \approx 0$. For a clean mercury-air-glass interface, $\theta \approx 130^{\circ}$.

Vapor pressure and cavitation

- Vapor pressure: the pressure at which a liquid boils and is in equilibrium with its own vapor.
- When the liquid pressure is dropped below the vapor pressure due to a flow phenomenon, we call the process cavitation.

- The dimensionless parameter describing flow-induced boiling is called cavitation number:

$$
C a=\frac{p_{a}-p_{v}}{0.5 \rho V^{2}}
$$

- Bubble formation due to high velocity (flow-induced boiling).

- Damage (erosion) due to cavitation on a marine propeller.

No-slip and no-temp jump

- When a fluid flow is bounded by a surface, molecular interactions cause the fluid in contact with the surface to seek momentum and energy equilibrium
with the surface.

- the compressibility effects are important at high gas flows due to significant
density changes.

- Speed of sound: is the rate of propagation of small disturbance pressure pulses (sound waves) through the fluid:

$$
a^{2}=k\left(\frac{\partial p}{\partial \rho}\right)_{T}, \quad k=\frac{c_{v}}{c_{v}}
$$

- For an ideal gas $\widetilde{a}_{\text {iEfnigus }}=\sqrt{\text { RRT }}$
- Mach number is the ratio of the flow to the speed of sound

$$
M a=\frac{V}{a}
$$

- Compressibility effects are normally neglected for $\mathrm{Ma}<0.3$

Flow pattern

(b)

- Streamline: is a line everywhere tangent to the velocity vector at a given instant.
- Pathline: is the actual path traversed by a given fluid particle.
- Note: in steady flows, streamlines and pathlines are identical.

If the elemental arc length drof a streamline is to be parallel to V, their respective components must be in proportion:

$$
\frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w}=\frac{d r}{V}
$$

- Bernoulli equation takes the form of

$$
\frac{V_{1}^{2}}{2}+\frac{P_{1}}{\rho}+g z_{1}=\frac{V_{2}^{2}}{2}+\frac{P_{2}}{\rho}+g z_{2}
$$

where V is the fluid velocity, P is the fluid pressure, z is the elevation of the location in the pipe relative to a specified reference elevation (datum), ρ is the fluid density, and g is gravity

The velocities at two axial locations in the duct with different areas are related through the conservation of mass equation,

$$
\rho_{1} V_{1} A_{1}=\rho_{2} V_{2} A_{2}=\dot{m}
$$

$\begin{array}{llll}P_{1} & \text { Flow } & P_{2} & \text { sectional area and } \dot{m} \\ A_{1} & z_{1} & A_{2} z_{2} & \text { is the fluid mass flow rate }\end{array}$

 the density is constant.conservation of mass equation
$\rho_{1} V_{1} A_{1}=\rho_{2} V_{2} A_{2}=\dot{m}$
is usually written in the form:

$$
\frac{V_{1}^{2}}{2}+\frac{P_{1}}{\rho}+g z_{1}=\frac{V_{2}^{2}}{2}+\frac{P_{2}}{\rho}+g z_{2}
$$

$V_{1} A_{1}=V_{2} A_{2}=Q$ where Q is the volume flow rate (e.g., $\mathrm{m}^{3} / \mathrm{s}$).
Equations can be combined to obtain an expression

$$
V_{2}=\frac{1}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{\frac{2\left[\left(P_{1}+g \rho z_{1}\right)-\left(P_{2}+g \rho z_{2}\right)\right]}{\rho}}
$$

$$
\begin{gathered}
V_{2}=\frac{1}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{\frac{2\left[\left(P_{1}+g \rho z_{1}\right)-\left(P_{2}+g \rho z_{2}\right)\right]}{\rho}} \\
V_{1} A_{1}=V_{2} A_{2}=Q \\
Q=\frac{A_{2}}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{\frac{2\left[\left(P_{1}+g \rho z_{1}\right)-\left(P_{2}+g \rho z_{2}\right)\right]}{\rho}}
\end{gathered}
$$

The theoretical basis for a class of flow meters in which the flow rate is determined from the pressure change caused by variation in the area of a conduit.

The factor C, called the discharge coefficient. is used to account for nonideal effects.
and a parameter called the Reynolds number, which is defined as

$$
\operatorname{Re}=\frac{\rho V D}{\mu}
$$

$$
\begin{aligned}
& Q=\frac{C A_{2}}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{\frac{2\left[\left(P_{1}+g \rho z_{1}\right)-\left(P_{2}+g \rho z_{2}\right)\right]}{\rho}} \\
& K=\frac{C}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \quad K, \text { called the flow coefficient, }
\end{aligned}
$$

When $Z_{1}=Z_{2}$ Flow Rate Equation becomes as follows:
$Q=\frac{C A_{2}}{\sqrt{1-\left(A_{2} / A_{1}\right)^{2}}} \sqrt{\frac{2 \Delta P}{\rho}}$

