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Chapter 8: Further Applications of Trigonometry 
In this chapter, we will explore additional applications of trigonometry.  We will begin 
with an extension of the right triangle trigonometry we explored in chapter 5 to situations 
involving non-right triangles.  As we have seen, many relationships cannot be represented 
using the Cartesian coordinate system, so we will explore the polar coordinate system and 
parametric equations as alternative systems for representing relationships.  In the process, 
we will introduce complex numbers and vectors, two important mathematical tools we 
use when analyzing and modeling the world around us. 
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Section 8.1 Non-right Triangles: Law of Sines and Cosines 
So far we have spent our time studying right triangles in and out of a circle.  Although 
right triangles allow us to solve many applications, it is more common to find scenarios 
where the triangle we are interested in does not have a right angle. 
 
Two radar stations located 20 miles apart 
both detect a UFO between them.  The 
angle of elevation measured by the first 
station is 35 degrees.  The angle of 
elevation measured by the second station is 
15 degrees.  What is the altitude of the 
UFO? 
 
In drawing this picture, we see that the triangle formed by the UFO and the two stations 
is not a right triangle.  Of course, in any triangle we could draw an altitude, a 
perpendicular line from one point or corner to the base across from it (in or outside of the 
triangle), forming two right triangles, but it would be nice to have methods for working 
directly with non-right triangles.  In this section we will expand upon the right triangle 
trigonometry we learned in chapter 5, and adapt it to non-right triangles. 
 
Law of Sines 
Given an arbitrary non-right triangle, we can drop an 
altitude, which we temporarily label h, to create two 
right triangles.   
 
Using the right triangle relationships,  

b

h
)sin(  and 

a

h
)sin( .   

 
 

α β 

a b 
h 

15° 35°
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Solving both equations for h, we get hb )sin(  and ha )sin( .  Since the h is the 
same in both equations, we establish )sin()sin(  ab  .  Dividing, we conclude that 

ba

)sin()sin( 
  

 
Had we drawn the altitude to be perpendicular to side b or a, we could similarly establish  

ca

)sin()sin( 
  and 

cb

)sin()sin( 
  

 
Collectively, these relationships are called the Law of Sines. 
 
 
Law of Sines 

Given a triangle with angles and sides opposite labeled as shown, the ratio of sine of 
angle to length of side opposite will always be equal, or symbolically, 

cba

)sin()sin()sin( 
  

 
For clarity, we call side a the corresponding side of angle α. 
Similarly, we call angle α, the corresponding angle of side a.   
Likewise for side b and angle β, and for side c and angle γ 

 
 
When we use the law of sines, we use any pair of ratios as an equation.  In the most 
straightforward case, we know two angles and one of the corresponding sides. 
 
 
Example 1 

In the triangle shown here, solve for the 
unknown sides and angle. 
 
Solving for the unknown angle is relatively 
easy, since the three angles must add to 180 
degrees.  From this, we can determine that γ 
= 180° – 50° – 30° = 100°. 
 
To find an unknown side, we need to know the corresponding angle, and we also need 
another complete ratio. 
 
Since we know the angle 50° and its corresponding side, we can use this for one of the 
two ratios.  To look for side b, we would use its corresponding angle, 30° 
 
 
 

50° 

10 b 

30° 
c

γ
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b

)30sin(

10

)50sin( 



   Multiply both sides by b 

)30sin(
10

)50sin(



b   Divide, or multiply by the reciprocal, to solve for b 

527.6
)50sin(

10
)30sin( 


b  

 
Similarly, to solve for side c, we set up the equation 

 
c

)100sin(

10

)50sin( 



  

856.12
)50sin(

10
)100sin( 


c  

 
 
Example 2 

Find the elevation of the UFO from the beginning of the section. 
 
To find the elevation of the UFO, we first 
find the distance from one station to the 
UFO, such as the side a in the picture, 
then use right triangle relationships to 
find the height of the UFO, h. 
 
Since the angles in the triangle add to 180 degrees, the unknown angle of the triangle 
must be 180° – 15° – 35° = 130°.  This angle is opposite the side of length 20, allowing 
us to set up a Law of Sines relationship: 

a

)35sin(

20

)130sin( 



  Multiply by a 

)35sin(
20

)130sin(



a   Divide, or multiply by the reciprocal, to solve for a 

975.14
)130sin(

)35sin(20





a   Simplify 

 
The distance from one station to the UFO is 14.975 miles. 
 
Now that we know a, we can use right triangle relationships to solve for h. 

975.14
)15sin(

h

a

h

hypotenuse

opposite
   Solve for h 

 
876.3)15sin(975.14 h  

 
The UFO is flying at an altitude of 3.876 miles. 

 
 

15° 35°
20 miles 

h 
a
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In addition to solving triangles in which two angles are known, the law of sines can be 
used to solve for an angle when two sides and one corresponding angle are known. 
 
 
Example 3 

In the triangle shown here, solve for the unknown sides and 
angles. 
 
In choosing which pair of ratios from the Law of Sines to 
use, we always want to pick a pair where we know three of 
the four pieces of information in the equation.  In this case, 
we know the angle 85° and its corresponding side, so we 
will use that ratio.  Since our only other known information 
is the side with length 9, we will use that side and solve for its angle. 

9

)sin(

12

)85sin( 



   Isolate the unknown 

)sin(
12

)85sin(9 


   Use the inverse sine to find a first solution 

 
Remember when we use the inverse function that there are two possible answers. 
 







 

  3438.48
12

)85sin(9
sin 1  By symmetry we find the second possible solution 

 6562.1313438.48180  
 
Since we have a picture of the desired triangle, it is fairly clear in this case that the 
desired angle is the acute value, 43.3438°. 
 
With a second angle, we can now easily find the third angle, since the angles must add 
to 180°, so α = 180° - 85° - 43.3438° = 51.6562°. 
 
Now that we know α, we can proceed as in earlier examples to find the unknown side a. 

a

)6562.51sin(

12

)85sin( 



  

4476.9
)85sin(

)6562.51sin(12





a  

 
 
Notice that in the problem above, when we use Law of Sines to solve for an unknown 
angle, there can be two possible solutions.  This is called the ambiguous case. In the 
ambiguous case we may find that a particular set of given information can lead to 2, 1 or 
no solution at all.  However, when a picture of the triangle or suitable context is 
available, we can determine which angle is desired.  When such information is not 
available, there may simply be two possible solutions, or one solution might not be 
possible, if the ratios are impossible. 

9 

12 

a 

85° 

β 

α
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Try it Now 

1. Given 121,120,80  ba , find the corresponding & missing side and angles.  
If there is more than one possible solution, show both. 

 
 
Example 4 

Find all possible triangles if one side has length 4 with an angle opposite of 50° and a 
second side with length 10. 
 
Using the given information, we can look for the angle opposite the side of length 10.   

10

)sin(

4

)50sin( 



 

915.1
4

)50sin(10
)sin( 


  

 
Since the range of the sine function is [-1, 1], it is impossible for the sine value to be 
1.915.  There are no triangles that can be drawn with the provided dimensions. 

 
 
Example 5 

Find all possible triangles if one side has length 6 with an angle opposite of 50° and a 
second side with length 4. 
 
Using the given information, we can look for the angle opposite the side of length 4.   

4

)sin(

6

)50sin( 



 

511.0
6

)50sin(4
)sin( 


   Use the inverse to find one solution 

    710.30511.0sin 1   By symmetry there is a second possible solution 
 290.149710.30180  

 
 
If we use the angle of 710.30 , the third angle would be  290.99710.3050180  
 
If we use the angle of 290.149 , the third angle would be 

 29.19290.14950180 , which is impossible, so the previous triangle is the 
only possible one. 

 
 
Try it Now 

2. Given 10,100,80  ba find the corresponding & missing side and angles.  If 
there is more than one possible solution, show both. 
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Law of Cosines 
Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and 
travels another 8 miles.  How far from port is the boat?   
 
Unfortunately, while the Law of Sines lets us address many non-right 
triangle cases, it does not allow us to address triangles where the one 
known angle is included between two known sides, which means it is 
not a corresponding angle.  For this, we need another relationship. 
 

Given an arbitrary non-right triangle, we can 
drop an altitude, which we temporarily label 
h, to create two right triangles.  We will 
divide the base b into two pieces, one of 
which we will temporarily label x.  From 
this picture, we can establish the right 
triangle relationship 

c

x
)cos( , or equivalently,  coscx   

 
Using the Pythagorean Theorem, we can establish 

  222 ahxb     and   222 chx   
 
Both of these equations can be solved for 2h  

 222 xbah   and  222 xch   
 
Since these are both equal to 2h , we can set the expressions equal 

 2222 xbaxc     Multiply out the right 

 22222 2 xbxbaxc    Simplify 
22222 2 xbxbaxc   

bxbac 2222      Isolate 2a  
bxbca 2222      Substitute in xc )cos(  from above 

)cos(2222 bcbca   
 
This result is called the Law of Cosines.  Depending upon which side we dropped the 
altitude down from, we could have established this relationship using any of the angles.  
The important thing to note is that the right side of the equation involves the angle and 
sides adjacent to that angle – the left side of the equation contains the corresponding 
angle. 
 
 
 
 

α γ 

a c 
h 

β 

x b - x
b

20° 

10 mi 

8 mi 
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Law of Cosines 

Given a triangle with angles and sides opposite labeled as shown, 
)cos(2222 bcbca   

)cos(2222 accab   

)cos(2222 abbac   
 
 
Notice that if one of the angles of the triangle is 90 degrees, cos(90°) = 0, so the formula 

)90cos(2222  abbac   Simplifies to 
222 bac      

 
You should recognize this as the Pythagorean Theorem.  Indeed, the Law of Cosines is 
sometimes called the General Pythagorean Theorem, since it extends the Pythagorean 
Theorem to non-right triangles. 
 
 
Example 6 

Returning to our question from earlier, suppose a boat leaves port, travels 
10 miles, turns 20 degrees, and travels another 8 miles.  How far from 
port is the boat? 
 
The boat turned 20 degrees, so the obtuse angle of the non-right triangle 
is the supplemental angle, 180° - 20° = 160°. 
 
With this, we can utilize the Law of Cosines to find the missing side of 
the obtuse triangle – the distance from the boat to port. 
 

)160cos()10)(8(2108 222 x   Evaluate the cosine and simplify 

3508.3142 x     Square root both sides 

730.173508.314 x  
 
The boat is 17.73 miles from port. 

 
 
Example 7 

Find the unknown side and angles of this 
triangle. 
 
Notice that we don’t have both pieces of 
any side / angle pair, so Law of Sines 
would not work in this triangle.   
 

20°

10 mi

8 mi 

θ 

10 x 

30° 
12 

φ
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Since we have the angle included between the two known sides, we can turn to Law of 
Cosines.  Since the left side of any of Law of Cosines equations is the side opposite the 
known angle, the left side will involve the side x.  The other two sides can be used in 
either order. 
 

)30cos()12)(10(21210 222 x   Evaluate the cosine 

2

3
)12)(10(21210 222 x   Simplify 

31202442 x     Take the square root 

013.63120244 x  
 
Now that we know an angle and the side opposite, we can use the Law of Sines to fill in 
the remaining angles of the triangle.  Solving for angle θ, 

10

)sin(

013.6

)30sin( 



 

013.6

)30sin(10
)sin(


    Use the inverse sine 







 

  256.56
013.6

)30sin(10
sin 1  

 
Since this angle appears acute in the picture, we don’t need to find a second solution. 
 
Now that we know two angles, we can find the last: 

 744.93256.5630180  
 
 
In addition to solving for the missing side opposite one known angle, the Law of Cosines 
allows us to find the angles of a triangle when we know all three sides. 
 
 
Example 8 

Solve for the angle α in the triangle shown. 
 
Using the Law of Cosines, 

)cos()25)(18(2251820 222    Simplify 
)cos(900949400   

)cos(900549   

)cos(
900

549 



 











  410.52
900

549
cos 1  

 

18 

25 

20 
α
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Try it Now 
3. Given 20,10,25  cb find the corresponding side and angles.   

 
 
Notice that since the cosine inverse can return an angle between 0 and 180 degrees, there 
will not be any ambiguous cases when using Law of Cosines to find an angle. 
 
 
Example 9 

On many cell phones with GPS, an approximate location can be given before the GPS 
signal is received.  This is done by a process called triangulation, which works by using 
the distance from two known points.  Suppose there are two cell phone towers within 
range of you, located 6000 feet apart along a straight highway that runs east to west, and 
you know you are north of the highway.  Based on the signal delay, it can be 
determined you are 5050 feet from the first tower, and 2420 feet from the second.  
Determine your position relative to the tower to the west and determine how far you are 
from the highway. 
 
For simplicity, we start by drawing a picture and 
labeling our given information.  Using the Law 
of Cosines, we can solve for the angle θ.  
 

)cos()6000)(5050(2505060002420 222   
)cos(60600000615015005856400   

)cos(60600000554646100   

9183.0
60600000

554646100
)cos( 




  

  328.23)9183.0(cos 1  
 
Using this angle, we could then use right 
triangles to find the position of the cell phone 
relative to the western tower. 
 

5050
)328.23cos(

x
  

2.4637)328.23cos(5050 x  feet 

5050
)328.23sin(

y
  

8.1999)328.23sin(5050 y  feet 
 
You are 5050 ft from the tower and 328.23  North of East.  Specifically, you are 4637.2 
feet East and 1999.8 ft North of the western tower 
 

2420 ft 5050 ft 

6000 ft 
θ 

5050 ft 

23.3° 
y 

x 
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Note that if you didn’t know if you were north of both towers, our calculations would 
have given two possible locations, one north of the highway and one south. To resolve 
this ambiguity in real world situations, locating a position using triangulation requires a 
signal from a third tower.  

 
 
Example 10 

To measure the height of a hill, a woman measures the angle of elevation to the top of 
the hill to be 24 degrees.  She then moves back 200 feet and measures the angle of 
elevation to be 22 degrees.  Find the height of the hill. 
 
As with many problems of this nature, it will be helpful to draw a picture. 

 
 
Notice there are three triangles formed here – the right triangle including the height h 
and the 22 degree angle, the right triangle including the height h and the 24 degree 
angle, and the non-right obtuse triangle including the 200 ft side.  Since this is the 
triangle we have the most information for, we will begin with it.  It may seem odd to 
work with this triangle since it does not include the desired side h, but we don’t have 
enough information to work with either of the right triangles yet. 
 
We can find the obtuse angle of the triangle, since it and the angle of 24 degrees 
complete a straight line – a 180 degree angle.  The obtuse angle must be 180° - 24° = 
156°.  From this, we can determine the last angle is 2°.  We know a side, 200 ft, and its 
corresponding angle, so by introducing a temporary variable x for one of the slant 
lengths, we can use Law of Sines to solve for this length x. 

 

)2sin(

200

)22sin( 



x

   Setting up the law of sine 

)2sin(

200
)22sin(


x    isolating the x value 

ftx 77.2146  
 

24° 
22° 

200 ft 

h 
156° 

2° 

x 

24° 22° 
200 ft 

h 
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Now that we have side x, we can use right triangle properties to solve for h. 

77.2146
)24sin(

h

x

h

hypotenuse

opposite
  

 
17.873)24sin(77.2146 h ft 

 
The hill is 873.17 ft high. 

 
 
Important Topics of This Section 

Law of Sines 
 Solving for sides 
 Solving for angles 
 Ambiguous case, 0, 1 or 2 solutions 
Law of Cosine 
 Solving for sides 
 Solving for angles 
General Pythagorean Identity 

 
 
Try it Now Answers 

1. 1st possible solution

2.35

8.16

2.83





c




 2nd solution 

9.6

2.3

8.96





c




 

     If we were given a picture or triangle it may be possible to eliminate one of these 
 
2. 25.101,35.94,65.5  c  
 
3. 725.11,9.133,1.21  a  
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Section 8.1 Exercises 
 
Solve for the unknown sides and angles of the triangles shown. 

1.    2.  

3.    4.  

5.    6.  

7.    8.  

Assume A  is opposite side a, B  is opposite side b, and C  is opposite side c.  Solve 
each triangle for the unknown sides and angles if possible.  If there is more than one 
possible solution, give both. 

9. 43 , 69 , 20A C b          10. 35 , 73 , 19A C b        

11. 119 , 26, 14A a b         12. 113 , 10, 32C b c      

13. 50 , 105, 45B a b         14. 67 , 49, 38B a b      

15. 43.1 , 184.2, 242.8A a b        16. 36.6 , 186.2, 242.2A a b      

30 

50 30° 
1

40° 

25 

70° 
90 

100
65° 

5 6 

75° 

45° 

15 

120
6 

25° 

40° 110

18 

70° 50° 

10 
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Solve for the unknown sides and angles of the triangles shown. 

17.    18.  

19.    20.  

 

Assume A  is opposite side a, B  is opposite side b, and C  is opposite side c.  Solve 
each triangle for the unknown sides and angles if possible.  If there is more than one 
possible solution, give both. 

21. 41.2 , 2.49, 3.13C a b        22. 58.7 , 10.6, 15.7B a c      

23. 120 , 6, 7A b c         24. 115 , 18, 23C a b      

25. Find the area of a triangle with sides length 18, 21, and 32 
 

26. Find the area of a triangle with sides length 20, 26, 37 
 

27. To find the distance across a small lake, a surveyor has 
taken the measurements shown. Find the distance across 
the lake. 

 

 

28. To find the distance between two cities, a satellite 
calculates the distances and angle shown (not to 
scale). Find the distance between the cities. 

 

 

5 

8 

10 13 

11 

20 

30° 16 
10 

60°
20 28 

800 ft 900 ft
70°

350 km
370 km

2.1°



464  Chapter 8 
 

 

29. To determine how far a boat is from shore, two radar 
stations 500 feet apart determine the angles out to the 
boat, as shown.  Find the distance of the boat from the 
station A, and the distance of the boat from shore. 

 

 

 

30. The path of a satellite orbiting the earth causes it to 
pass directly over two tracking stations A and B, 
which are 69 mi apart. When the satellite is on one 
side of the two stations, the angles of elevation at A 
and B are measured to be 86.2° and 83.9°, 
respectively.  How far is the satellite from station A 
and how high is the satellite above the ground? 

 

 

31. A communications tower is located at the top of a 
steep hill, as shown. The angle of inclination of 
the hill is 67°. A guy wire is to be attached to the 
top of the tower and to the ground, 165 m 
downhill from the base of the tower. The angle 
formed by the guy wire is 16°. Find the length of 
the cable required for the guy wire. 

 

 

32. The roof of a house is at a 20° angle.  An 8 foot 
solar panel  is to be mounted on the roof, and 
should be angled 38° for optimal results.  How 
long does the vertical support holding up the 
back of the panel need to be? 
 
 
 

33. A 127 foot tower is located on a hill that is 
inclined 38° to the horizontal.  A guy wire is to 
be attached to the top of the tower and anchored 
at a point 64 feet downhill from the base of the 
tower.  Find the length of wire needed. 

70°
A

60°
B

86.2°83.9° 

A B 

67°

16° 
165m 

38°
64 ft 

127 ft

20°

38°

8 ft
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34. A 113 foot tower is located on a hill that is 

inclined 34° to the horizontal.  A guy wire is to 
be attached to the top of the tower and anchored 
at a point 98 feet uphill from the base of the 
tower.  Find the length of wire needed. 

 

 

35. A pilot is flying over a straight highway. He 
determines the angles of depression to two 
mileposts, 6.6 km apart, to be 37° and 44°, as 
shown in the figure.  Find the distance of the plane 
from point A, and the elevation of the plane. 

 

 

36. A pilot is flying over a straight highway. He 
determines the angles of depression to two 
mileposts, 4.3 km apart, to be 32° and 56°, as 
shown in the figure.  Find the distance of the plane 
from point A, and the elevation of the plane. 

 

37. To estimate the height of a building, two students find the angle of elevation from a 
point (at ground level) down the street from the building to the top of the building is 
39°. From a point that is 300 feet closer to the building, the angle of elevation (at 
ground level) to the top of the building is 50°. If we assume that the street is level, use 
this information to estimate the height of the building. 
 

38. To estimate the height of a building, two students find the angle of elevation from a 
point (at ground level) down the street from the building to the top of the building is 
35°. From a point that is 300 feet closer to the building, the angle of elevation (at 
ground level) to the top of the building is 53°. If we assume that the street is level, use 
this information to estimate the height of the building. 
 

39. A pilot flies in a straight path for 1 hour 30 min. She then makes a course correction, 
heading 10 degrees to the right of her original course, and flies 2 hours in the new 
direction. If she maintains a constant speed of 680 miles per hour, how far is she from 
her starting position? 
 

34° 

98 ft
113 ft 

A B

37° 44°

A B

32° 
56° 
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40. Two planes leave the same airport at the same time.  One flies at 20 degrees east of 
north at 500 miles per hour.  The second flies at 30 east of south at 600 miles per 
hour.  How far apart are the planes after 2 hours? 
 

41. The four sequential sides of a quadrilateral have lengths 4.5 cm, 7.9 cm, 9.4 cm, and 
12.9 cm.  The angle between the two smallest sides is 117°.  What is the area of this 
quadrilateral? 
 

42. The four sequential sides of a quadrilateral have lengths 5.7 cm, 7.2 cm, 9.4 cm, and 
12.8 cm.  The angle between the two smallest sides is 106°.  What is the area of this 
quadrilateral? 
 
 

43. Three circles with radii 6, 7, and 8 respectively, all touch as shown.  
Find the shaded area bounded by the three circles. 

 

 

44. A rectangle is inscribed in a circle of radius 10 cm as shown.  Find the 
shaded area, inside the circle but outside the rectangle. 

 

 

 

55° 
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Section 8.2 Polar Coordinates 
 
The coordinate system we are most familiar with is called the Cartesian coordinate 
system, a rectangular plane quartered by the horizontal and vertical axis. 
 
In some cases, this coordinate system is not the most useful way 
to describe points in the plane.  In earlier chapters, we often 
found the Cartesian coordinates of a point on a circle at a given 
angle.  Sometimes, the angle and distance from the origin is the 
more useful information.   
 
 
Polar Coordinates 

The polar coordinates of a point are an ordered pair, ),( r , where r is the distance from 
the point to the origin, and θ is the angle measured in standard position. 

 
 
Notice that if we were to “grid” the plane for polar coordinates, it 
would look like the plane to the right, with circles at incremental radii, 
and lines drawn at incremental angles.   
 
 
Example 1 

Plot the polar point 







6

5
,3


 

 
This point will be a distance of 3 from the origin, at an angle of 

6

5
.  Plotting this, 

 
 
Example 2 

Plot the polar point 







4
,2


 

 
While normally we use positive r values, occasionally we run into 
cases where r is negative.  On a regular number line, we measure 
positive values to the right and negative values to the left.  We will 

plot this point similarly.  To start we rotate to an angle of 
4


.  

Moving this direction, into the first quadrant, would be positive r 
values.  For negative r values, we move the opposite direction, into 
the third quadrant.  Plotting this, 

 

y 

x
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Note the resulting point is the same as the polar point 
5

2,
4

 
 
 

. 

 
 
Try it Now 

1. Plot the following points and label them 

a. 3,
6

A
   

 
   b. 2,

3
B

   
 

 c. 
3

4,
4

C
   

 
 

 
 
Converting Points 
To convert between polar coordinates and Cartesian coordinates, we recall the 
relationships we developed back in chapter 5. 
 
 
Converting Between Polar and Cartesian Coordinates 

To convert between Polar ),( r and Cartesian (x, y) coordinates, 
we use the relationships 
 

r

x
)cos(   )cos(rx   

r

y
)sin(   )sin(ry   

x

y
)tan(   222 ryx   

 
 

From these relationship and our knowledge of the unit circle, if r = 1 and 
3

  , the 

polar coordinates would be ( , ) 1,
3

r
    

 
, and the corresponding Cartesian 

coordinates
1 3

( , ) ,
2 2

x y
 

   
 

 

 
Remembering your unit circle values will come in very handy as you convert between 
Cartesian and Polar coordinates. 
 
 
 
 
 
 
 

(x, y) 

r 

θ 
y 

x 
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Example 3 

Find the Cartesian coordinates of a point with polar coordinates 







3

2
,5),(
r  

 
To find the x and y coordinates of the point, 

2

5

2

1
5

3

2
cos5)cos( 














rx  

2

35

2

3
5

3

2
sin5)sin( 
















ry  

 

The Cartesian coordinates are 









2

35
,

2

5
 

 
 
Example 4 

Find the polar coordinates of the point with Cartesian coordinates )4,3(   
 
We begin by finding the distance r using the Pythagorean relationship 222 ryx   

222 )4()3( r  
29 16 r   

252 r  
5r  

 
Now that we know the radius, we can find the angle using any of the three trig 
relationships.  Keep in mind that any of the relationships will produce two solutions on 
the circle, and we need to consider the quadrant to determine which solution to accept.  
Using the cosine, for example: 

5

3
)cos(




r

x  

214.2
5

3
cos 1 






     By symmetry, there is a second solution at 

069.4214.22    
 
Since the point (-3, -4) is located in the 3rd quadrant, we can determine that the second 
angle is the one we need.  The polar coordinates of this point are )069.4,5(),( r  

 
 
Try it Now 

2. Convert the following 
a. Convert Polar coordinates  ( , ) 2,r    to ( , )x y   

b. Convert Cartesian coordinates ( , ) (0, 4)x y    to ( , )r   
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Polar Equations 
Just as a Cartesian equation like 2xy   describes a relationship between x and y values 
on a Cartesian grid, a polar equation can be written describing a relationship between r 
and θ values on the polar grid.   
 
 
Example 5 

Sketch a graph of the polar equation r  
 
The equation r  describes all the points for which the radius r is equal to the angle.  
To visualize this relationship, we can create a table of values. 

 
 
We can plot these points on the plane, and then sketch a 
curve that fits the points.  The resulting graph is a spiral. 
 
Notice that while y is not a function of x, r is a function of 
θ.  Polar functions allow us a functional representation for 
many relationships in which y is not a function of x.   
 

 
 
Although it is nice to see polar equations on polar 
grids, it is more common for polar graphs to be 
graphed on the Cartesian coordinate system, and so, 
the remainder of the polar equations will be graphed 
accordingly.   
 
The spiral graph above on a Cartesian grid is shown 
here. 
 
 
Example 6 

Sketch a graph of the polar equation 3r  
 
Recall that when a variable does not show up in the equation, it 
is saying that it does not matter what value that variable has; 
the output for the equation will remain the same. 
 
For example, the Cartesian equation y = 3 describes all the 
points where y = 3, no matter what the x values are, producing 
a horizontal line. 
 
Likewise, this polar equation is describing all the points at a distance of 3 from the 
origin, no matter what the angle is, producing the graph of a circle. 

θ 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 
r 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 
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The normal settings on graphing calculators and software graph on the Cartesian 
coordinate system with y being a function of x,  where the graphing utility asks for f(x), or 
simply y =. 
 
To graph polar equations, you may need to change the mode of your calculator to Polar.  
You will know you have been successful in changing the mode if you now have r as a 
function of θ, where the graphing utility asks for r(θ), or simply r =. 
 
 
Example 7 

Sketch a graph of the polar equation )cos(4 r , and indicate 
how long it takes to complete one cycle. 
 
While we could again use technology to find points and plot this, 
we can also turn to technology to help us graph it.  Using 
technology, we produce the graph shown here, a circle touching 
the origin.  
 
Since this graph appears to close a loop and repeat itself, we might ask what interval of 
θ values draws the entire graph.  At θ = 0, 4)0cos(4 r .  We would then consider 
the next θ value when r will be 4, which would mean we are back where we started.  
Solving, 

)cos(44   
1)cos(   

0 or    
This shows us at 0 radians we are at the point (0, 4) and again at  radians we are at the 
point (0, 4) having finished one complete revolution. 
 
The entire graph of this circle is produced for  0 . 

 
 
Try it Now 

3. Sketch a graph of the polar equation 3sin( )r  , and indicate how long it takes to 
complete one cycle. 
 
 

The last few examples have all been circles.  Next we will consider two other “named” 
polar equations, limaçons and roses.   
 
 
Example 8 

Sketch a graph of the polar equation 2)sin(4  r .  What interval of θ values 
describes the inner loop?  
 
This type of graph is called a limaçon.   
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Using technology, we can sketch a graph.  The inner loop 
begins and ends at the origin, where r = 0.  We can solve 
for the θ values for which r = 0. 

2)sin(40    
)sin(42   

2

1
)sin(   

6

7   or 
6

11   

 
This tells us that r = 0 or the graph passes through the point (0, 0) twice. 

The inner loop is drawn on the interval 
6

11

6

7 
 .  This corresponds to where the 

function 2)sin(4  r  is negative. 
 
 
Example 9 

Sketch a graph of the polar equation )3cos( r .  What 
interval of θ values describes one small loop of the graph? 
 
This type of graph is called a 3 leaf rose. 
 
Again we can use technology to produce a graph.  As with the 
last problem, we can note that one loop of this graph begins and 
ends at the origin, where r = 0.  Solving for θ, 

)3cos(0     Substitute u = 3θ 
)cos(0 u  

2


u  or 

2

3
u   Undo the substitution 

2
3

   or  
2

3
3

   

6

   or 
2

   

 
There are 3 solutions on  20   which correspond to the 3 times the graph returns 
to the origin, but the two solutions we solved for above are enough to conclude that one 

loop is drawn for 
26


 .  
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If we wanted to get an idea of how this graph was drawn, consider when θ = 0. 

cos(3 ) cos(0) 1r    , so the graph starts at (1,0).  We also know that at 
6

  , 

cos 3 cos 0
6 2

r
         

   
, and at 

2

  , 
3

cos 3 cos 0
2 2

r
         

   
. 

Looking at the graph, notice that at any angle in this range, for example at 
3


, produces 

a negative r:  cos 3 cos 1
3

r
      

 
.  Since )3cos( r  is negative on this 

interval, this interval corresponds to the loop of the graph in the third quadrant. 
 
 
Try it Now 

4. Sketch a graph of the polar equation sin(2 )r  .  Would you call this function a 
limaçon or a rose? 

 
 
Converting Equations 
While many polar equations cannot be expressed nicely as Cartesian equations and vice 
versa, it can be beneficial to convert between the two forms, when possible.  To do this 
we use the same relationships we used to convert points between coordinate systems. 
 
 
Example 10 

Rewrite the Cartesian equation yyx 622   as a polar equation. 
 
We wish to eliminate x and y from the equation and introduce r and θ.  Ideally, we 
would like to write the equation with r isolated, if possible, which represents r as a 
function of θ. 

yyx 622     Remembering 222 ryx   we substitute  

yr 62      )sin(ry   and so we substitute again 

)sin(62 rr     Dividing by r we get the polar form 
)sin(6 r  

 
This equation is fairly similar to the one we graphed in Example 7.  In fact, this 
equation describes a circle with bottom on the origin and top at the point (0, 6) 
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Example 11 
Rewrite the Cartesian equation 23  xy  as a polar equation. 
 

23  xy     Use )sin(ry   and )cos(rx   
2)cos(3)sin(   rr   Move all terms with r to one side 
2)cos(3)sin(   rr   Factor out r 

  2)cos(3)sin(  r   Divide 

)cos(3)sin(

2

 
r  

 
In this case, the polar equation is not as concise as the Cartesian equation, but there are 
still times when this equation might be useful. 

 
 
Example 12 

Rewrite the Polar equation 
)cos(21

3


r  as a Cartesian equation. 

 
We want to eliminate θ and r and introduce x and y.  It is usually easiest to start by 
clearing the fraction and looking to substitute values in that will eliminate θ . 

)cos(21

3


r    Clear the fraction 

  3)cos(21  r    Use 
r

x
)cos(  to eliminate θ  

321 





 

r

x
r    Distribute and simplify 

32  xr     Isolate the r 
xr 23     Square both sides 

 22 23 xr     Use 222 ryx   

 222 23 xyx   
 
When our entire equation has been changed from r and θ to x and y we can stop unless 
asked to solve for y or simplify. 
 
In this example, if desired, the right side of the equation could be expanded and the 
equation simplified further.  However, the equation cannot be solved for y, so cannot be 
written as a function in Cartesian form. 

 
 
Try it Now 

5. a. Rewrite the Cartesian equation as a polar equation 23y x    
    b. Rewrite the Polar equation as a Cartesian equation 2sin( )r   



  Section 8.2 Polar Coordinates  475 
 

 

Example 13 
Rewrite the polar equation )2sin( r  as a Cartesian equation. 
 

)2sin( r     Use the double angle identity for sine 

)cos()sin(2 r    Use 
r

x
)cos(  and 

r

y
)sin(  

r

y

r

x
r  2     Simplify 

2

2

r

xy
r      Multiply by r2 

xyr 23      Since 222 ryx  , 22 yxr   

  xyyx 2
3

22   

 
This equation could also be written as  

  xyyx 2
2/322    or    3/222 2xyyx   

 
 
Important Topics of This Section 

Cartesian Coordinate System 
Polar Coordinate System 
Polar coordinates ( , ) ( , )r and r   
Converting points between systems 
Polar equations: Spirals, circles, limaçons and roses 
Converting equations between systems 

 
 
Try it Now Answers 

1.  
 
2. a.  ( , ) 2,r   converts to  ( , ) ( 2,0)x y    

    b.  ( , ) 0, 4x y    converts to 
3

( , ) 4, 4,
2 2

r or
         

   
 

A 

B 

C 
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3. .  It completes one cycle between  0  
 

4.   This is a 4 leaf rose 
 

5. a. 23y x    becomes r = 3 

    b. 2sin( )r   becomes 2 2 2x y y   
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Section 8.2 Exercises 
 
Convert the Polar coordinate to a Cartesian coordinate 

1. 
7

7,
6

 
 
 

  2. 
3

6,
4

 
 
 

  3. 
7

4,
4

 
 
 

  4. 
4

9,
3

 
 
 

  

5. 





 

4
, 6


  6. 12,
3

  
 

  7. 3,
2

 
 
 

  8.  5,   

9. 3,
6

  
 

  10. 
2

2,
3

  
 

  11. (3,2)   12. (7,1)  

 
Convert the Cartesian coordinate to a Polar coordinate 
13. (4,2)   14. (8, 8)   15. ( 4, 6)   16. ( 5,1 )   

17. (3, 5)   18. (6, 5)   19.  10, 13    20. ( 4, 7)   

 
Convert the Cartesian equation to a Polar equation 
21. 3x    22. 4y    23. 24y x   24. 42y x  

25. 2 2 4x y y   26. 2 2 3x y x   27. 2 2x y x   28. 2 2 3x y y   

 
Convert the Polar equation to a Cartesian equation 
29.  3sinr      30.  4cosr    

31. 
   

4

sin 7 cos
r

 



   32. 

   
6

cos 3sin
r

 



 

33.  2secr      34.  3cscr     

35.  cos 2r r       36.    2 4sec cscr    

 
 
 
 
 
 



478  Chapter 8 
 

 

Match each equation with one of the graphs shown. 
37.  2 2cosr     38.  2 2sinr      39.  4 3cosr     

40.  3 4cosr     41. 5r     42.  2sinr   

A  B  C   

D  E   F  

 

Match each equation with one of the graphs shown.   

43.  logr    44.  cosr      45. cos
2

r
   
 

  

46.    2sin cosr    47.  1 2sin 3r    48.  1 sin 2r    

A   B  C  

D   E   F  
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Sketch a graph of the polar equation 
49.  3cosr    50.  4sinr    51.  3sin 2r    

52.  4sin 4r    53.  5sin 3r    54.  4sin 5r     

55.  3cos 2r    56.  4cos 4r    57.  2 2cosr     

58.  3 3sinr     59.  1 3sinr     60.  2 4cosr    

61. 2r     62. 
1

r


     

63.  3 secr   , a conchoids  64. 

1

r , a lituus1 

65.    2sin tanr   , a cissoid   66.  22 1 sinr   , a hippopede   

                                                 
1 This curve was the inspiration for the artwork featured on the cover of this book. 
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Section 8.3 Polar Form of Complex Numbers 
  
From previous classes, you may have encountered “imaginary numbers” – the square root 
of negative numbers – and their more general form, complex numbers.  While these are 
useful for expressing the solutions to quadratics, they have much richer applications to 
electrical engineering, signal analysis, and other fields.  Most of these more advanced 
applications rely on the properties that arise from looking at complex numbers through 
the eyes of polar coordinates. 
 
We will begin with a review of the definition of complex numbers. 
 
 
Imaginary Number i 

The most basic element of a complex number is i, defined to be 1i , commonly 
called an imaginary number. 

 
 
Example 1 

Simplify 9  
 

We can separate 9  as 19  .  We can take the square root of 9, and write the 
square root of -1 as i.   

9 = i319   
 
 
A complex number is a combination of a real term with an imaginary term. 
 
 
Complex Number 

A complex number is a number biaz   
a  is the real part of the complex number 
b  is the imaginary part of the complex number 

1i  
 
 
Plotting a complex number 
 
With real numbers, we can plot a number on a single number line.  For example, if we 
wanted to show the number 3, we plot a point: 
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To show a complex number like i43 , we need more than just one number line since 
there are two components to the number.  To plot this number, we need a complex plane.   
 
 
Complex Plane 

In the complex plane, the horizontal axis is the real axis 
and the vertical axis is the imaginary axis. 

 
 
 
 
Example 2 

Plot the number i43  on the complex plane. 
 
The real part of this number is 3, and the imaginary part is -4.  
To plot this, we put a point 3 in the horizontal and -4 in the 
vertical. 
 
Because this is analogous to the Cartesian Coordinate system 
for plotting points, we can look at our complex number 

biaz   as z x yi   in order to study some of the 
similarities between these two systems. 

 
 
Arithmetic on Complex Numbers 
Before we dive into the more complicated uses of complex numbers, let’s make sure we 
remember the basic arithmetic.  To add or subtract complex numbers, we simply add the 
like terms, combining the real parts and combining the imaginary parts. 
 
 
Example 3 

Add i43  and i52   
 
Adding )52()43( ii  , we add the real parts and the imaginary parts 

ii 5423   
i5  

 
 
Try it Now 

1. Subtract i43  and i52   
 
 
We can also multiply and divide complex numbers. 
 
 
 

real 

imaginary 

real 

imaginary 
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Example 4 
Multiply:  )52(4 i  
 
To multiply the complex number by a real number, we simply distribute as we would 
when multiplying polynomials. 
 

)52(4 i  
= i5424   

i208   
 
 
Example 5 

Divide 
(2 5 )

(4 )

i

i




 

 
To divide two complex numbers, we have to devise a way to write this as a complex 
number with a real part and an imaginary part.   
 
We start this process by eliminating the complex number in the denominator.  To do 
this, we multiply the numerator and denominator by a complex number so that the result 
in the denominator is a real number.  The number we need to multiply by is called the 
complex conjugate, in which the sign of the imaginary part is changed.  Here, 4+i  is 
the complex conjugate of 4-i.  Of course, obeying our algebraic rules, we must multiply 
by 4+i  on the top and bottom. 
(2 5 ) (4 )

(4 ) (4 )

i i

i i

 


 
   

 
To multiply two complex numbers, we expand the product as we would with 
polynomials (the process commonly called FOIL – “first outer inner last”).  In the 
numerator: 
 
(2 5 )(4 )i i     Expand 

28 20 2 5i i i       Since 1i , 12 i  
8 20 2 5( 1)i i       Simplify 
3 22i   

 
Following the same process to multiply the denominator  
(4 )(4 )i i      Expand 

2(16 4 4 )i i i      Since 1i , 12 i  
(16 ( 1))    
=17 
 

Combining this we get 
3 22 3 22

17 17 17

i i
    
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Try it Now 
2.  Multiply i43  and 2 3i  

 
 
With the interpretation of complex numbers as points in a plane, which can be related to 
the Cartesian coordinate system, you might be starting to guess our next step – to refer to 
this point not by its horizontal and vertical components, but its polar location, given by 
the distance from the origin and angle. 
 
 
Polar Form of Complex Numbers 
Remember because the complex plane is analogous to the Cartesian plane that we can 
write our complex number, z a bi  as z x yi  . 
 
Bringing in all of our old rules we remember the following:  
 

r

x
)cos(   )cos(rx   

r

y
)sin(   )sin(ry   

x

y
)tan(   222 ryx   

 
 
With this in mind, we can write cos( ) sin( )z x yi r ir     . 
 
 
Example 6 

Express the complex number i4  using polar coordinates.  
 

On the complex plane, the number 4i is a distance of 4 from the origin at an angle of 
2


, 

so 














2
sin4

2
cos44


ii   

 
Note that the real part of this complex number is 0 

 
 
In the 18th century, Leonhard Euler demonstrated a relationship between exponential and 
trigonometric functions that allows the use of complex numbers to greatly simplify some 
trigonometric calculations.  While the proof is beyond the scope of this class, you will 
likely see it in a later calculus class.  
 
 
 

x + yi 

r 

θ 
y 

x 
real 

imaginary 
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Polar Form of a Complex Number and Euler’s Formula 
The polar form of a complex number 
The polar form of a complex number is  irez   
 
Euler’s Formula 

)sin()cos(  irrrei   
 
Similar to plotting a point in the Polar Coordinate system we need r and   to find the 
polar form of a complex number. 

 
 
Example 7 

Find the polar form of the complex number -7 
 
Knowing that this is a complex number we can consider the unsimplified version -7+0i 
 
Plotted in the complex plane, the number -7 is on the negative horizontal axis, a 
distance of 7 from the origin at an angle of π.   
 
The polar form of the number -7 is ie7  
 
Note that the radius is still 7, and the values of cosine and sine at an angle of π account 
for the value being at -7 on the horizontal axis. 

 
 
Example 8 

Find the polar form of i44   
 
On the complex plane, this complex number would correspond to the point (-4, 4) on a 
Cartesian plane.  We can find the distance r and angle θ as we did in the last section. 
 

222 yxr   
222 4)4( r  

2432 r  
 

To find θ, we can use 
r

x
)cos(   

2

2

24

4
)cos( 


  

This is one of known cosine values, and since the point is in the second quadrant, we 

can conclude that 
4

3  . 

The final polar form of this complex number is 
i

e 4

3

24

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Note we could have used 
x

y
)tan(  instead to find the angle, so long as we remember to 

check the quadrant. 
 
  
Try it Now 

3.  Write 3 i  in polar form 
 
 
Example 9 

Write 
i

e 63


 in complex a bi  form. 
 
















6
sin3

6
cos33 6 

ie
i

   Evaluate the trig functions 

2

1
3

2

3
3  i      Simplify 

2

3

2

33
i  

 
 
The polar form of a complex number provides a powerful way to compute powers and 
roots of complex numbers by using exponent rules you learned in algebra.  To compute a 
power of a complex number, we: 

1) Convert to polar form 
2) Raise to the power, using exponent rules to simplify 
3) Convert back to a + bi form, if needed 

 
 
Example 10 

Evaluate  644 i  
 
While we could multiply this number by itself six times, that would be very tedious.  
Instead, we can utilize the polar form of the complex number.  In an earlier example, we 

found that 
i

ei 4

3

2444


 .  Using this, 
 

 644 i    Write the complex number in polar form 
6

4

3

24 









i
e



  Utilize the exponent rule mmm baab )(  

 
6

4

3
6

24 









i
e



  On the second factor, use the rule mnnm aa )(  
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  6
4

3
6

24



i

e


  Simplify 

i
e 2

9

32768


    
 
At this point, we have found the power as a complex number in polar form.  If we want 
the answer in standard a + bi form, we can utilize Euler’s formula. 
 
















2

9
sin32768

2

9
cos3276832768 2

9 

ie
i

 

 

Since 
2

9
 is coterminal with 

2


, we can use our special angle knowledge to evaluate 

the sine and cosine. 
















2

9
sin32768

2

9
cos32768


i ii 32768)1(32768)0(32768   

 

We have found that   ii 3276844 6   
 

Notice that this is equivalent to  66 4 4z i   , written in polar form  

   
636 6

4
3 3

4 2 4 2 cos *6 sin *6
4 4

i
e i

                     
 

 
 
The result of the process we followed above is summarized in DeMoivre’s Theorem. 
 
 
DeMoivre’s Theorem 

If    (cos sin )z r i   , then for any integer n,    (cos sin )n nz r n i n    

 
 
Example 11 

Evaluate i9  
 
To evaluate the square root of a complex number, we can first note that the square root 

is the same as having an exponent of ½.  2/1)9(9 ii   
 
To evaluate the power, we first write the complex number in polar form.  Since 9i has 
no real part, we know that this value would be plotted along the vertical axis, a distance 

of 9 from the origin at an angle of 
2


.  This gives the polar form:  

i
ei 299


  
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2/1)9(9 ii     Use the polar form 

=

2/1

29 






 i
e


   Use exponent rules to simplify 

2/1

22/19 









i
e


 

2

1

22/19



i

e


   Simplify 
i

e 43


    Rewrite using Euler’s formula if desired 
















4
sin3

4
cos3


i  Evaluate the sine and cosine 

2

2
3

2

2
3 i  

 
Using the polar form, we were able to find the square root of a complex number. 

ii
2

23

2

23
9   

 
Alternatively, using DeMoivre’s Theorem we can write 

2/1

29 






 i
e


3 cos sin
4 4

i
              

 and simplify 

 
 
Try it Now 

4.  Write  6

3 i  in polar form 

 
 
You may remember that equations like 42 x have two solutions, 2 and -2 in this case, 
though the square root only gives one of those solutions.  Similarly, the equation 3 8z   
would have three solutions where only one is given by the cube root.  In this case, 
however, only one of those solutions, z = 2, is a real value.  To find the others, we can use 
the fact that complex numbers have multiple representations in polar form. 
 
 
Example 12 

Find all complex solutions to 3 8z  . 
 
Since we are trying to solve 3 8z  , we can solve for x as 1/38z  .  Certainly one of 
these solutions is the basic cube root, giving z = 2.  To find others, we can turn to the 
polar representation of 8.   
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Since 8 is a real number, is would sit in the complex plane on the horizontal axis at an 
angle of 0, giving the polar form ie08 .  Taking the 1/3 power of this gives the real 
solution: 

    2)0sin(2)0cos(2288 03/103/13/10  ieee ii  
 
However, since the angle 2π is coterminal with the angle of 0, we could also represent 
the number 8 as ie 28 .  Taking the 1/3 power of this gives a first complex solution: 

    iiieee
i

ii 31
2

3
2

2

1
2

3

2
sin2

3

2
cos2288 3

2
3/123/13/12 


































 
To find the third root, we use the angle of 4π, which is also coterminal with an angle of 
0. 

    iiieee
i

ii 31
2

3
2

2

1
2

3

4
sin2

3

4
cos2288 3

4
3/143/13/14 


































Altogether, we found all three complex solutions to 3 8z  , 

2, 1 3 , 1 3z i i      
 
 
Important Topics of This Section 

Complex numbers 
Imaginary numbers 
Plotting points in the complex coordinate system 
Basic operations with complex numbers  
Euler’s Formula 
DeMoivre’s Theorem 
Finding complex solutions to equations 

 
 
Try it Now Answers 

1. (3 4 ) (2 5 ) 1 9i i i       
2. (3 4 )(2 3 ) 18i i i      

3. 3 i  in polar form is 62
i

e


 
4. 64   
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Section 8.3 Exercises 
Simplify each expression to a single complex number 

1. 9    2. 16    3. 6 24     

4. 3 75     5. 
2 12

2

 
   6. 

4 20

2

 
 

 
Simplify each expression to a single complex number 
7.  3 2 (5 3 )i i       8.    2 4 1 6i i     

9.  5 3 (6 )i i        10.  2 3 (3 2 )i i    

11.  2 3 (4 )i i     12.  5 2 (3 )i i  

13.  6 2 (5)i     14.   2 4 8i   

15.  2 3 (4 )i i      16.  1 2 ( 2 3 )i i     

17.  4 2 (4 2 )i i      18.   3 4 3 4i i   

19. 
3 4

2

i
     20. 

6 2

3

i
 

21. 
5 3

2

i

i

 
     22. 

6 4i

i


 

23. 
2 3

4 3

i

i




     24. 
3 4

2

i

i




 

25. 6i    26. 11i    27. 17i    28. 24i  

 
Rewrite each complex number from polar form into a bi  form 

29. 23 ie   30. 44 ie   31. 66
i

e


  32. 38
i

e


   

33. 
5

43
i

e


  34. 
7

45
i

e


 

 
Rewrite each complex number into polar ire   form 
35. 6    36. 8    37. 4i   38. 6i    

39. 2 2i   40. 4 4i   41. 3 3i    42. 4 4i    

43. 5 3i   44. 4 7i   45. 3 i    46. 2 3i   

47. 1 4i    48. 3 6i    49. 5 i   50. 1 3i   
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Compute each of the following, leaving the result in polar ire   form 

51. 6 43 2  
i i

e e
   

  
  

  52. 
2 5

3 32 4
i i

e e
   

  
  

   53. 

3

4

6

6

3

i

i

e

e



    

54. 

4

3

2

24

6

i

i

e

e



    55. 

10

42
i

e
 

 
 

   56. 

4

63
i

e
 

 
 

    

57. 
2

316  
i

e


   58.
3

29
i

e


 

 
Compute each of the following, simplifying the result into a bi  form 

59.  8
2 2i    60.  6

4 4i    61. 3 3i     

62. 4 4i     63. 3 5 3i    64. 4 4 7i  

 
Solve each of the following equations for all complex solutions 
65. 5 2z    66. 7 3z    67. 6 1z    68. 8 1z   
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Section 8.4 Vectors 
 
A woman leaves home, walks 3 miles north, then 2 miles southeast.  How far is she from 
home, and what direction would she need to walk to return home?  How far has she 
walked total by the time she gets home? 
 
This question may seem familiar – indeed we did a similar problem with a boat in the 
first section of the chapter.  In that section, we solved the problem using triangles.  In this 
section, we will investigate another way to approach the problem using vectors, a 
geometric entity that indicates both a distance and a direction.  We will begin our 
investigation using a purely geometric view of vectors. 
 
A Geometric View of Vectors 
 
Vector 

A vector is an indicator of both length and direction. 
 
Geometrically, a vector can be represented by an arrow or a ray, which has both length 
and indicates a direction.  Starting at the point A, a vector, which means “carrier” in 

Latin, moves toward point B, we write AB


. 
 
A vector is typically indicated using boldface type, like u, or by capping the letter 
representing the vector with an arrow, like u


. 

 
 
Example 1 

Find a vector that represents the movement from the point P:(-1, 2) to the point Q:(3,3) 
 
By drawing an arrow from the first point to the second, 

we can construct a vector PQ


.  
 
 
 
 

 
 
Using this geometric representation of vectors, we can visualize the addition and scaling 
of vectors.   
 
To add vectors, we envision a sum of two movements.  To find vu


 , we first draw the 

vector u


, then from the end of u


 we drawn the vector v


.  This corresponds to the 
notation that first we move along the first vector, and then from that end position we 
move along the second vector.  The sum vu


  is the new vector that travels directly from 

the beginning of u


 to the end of v


in a straight path. 

P 

Q
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Adding Vectors Geometrically 

To add vectors geometrically, draw v


 starting from the end of 
u


.  The sum vu


  is the vector from the beginning of u


 to the 
end of v


. 

 
 

 
 
Example 2 

Given the two vectors shown below, draw vu


  
 
 
 
 
 
 
We draw v


 starting from the end of u


, then draw in the sum 

vu


  from the beginning of u


 to the end of v


. 
 

 
 
Notice that the woman walking problem from the beginning of the section could be 
visualized as the sum of two vectors.  The resulting sum vector would indicate her end 
position relative to home. 
 
 
Try it Now 

1. Draw a vector, v


 that travels from the origin to the point (3, 5) 
 
Note that although vectors can exist anywhere in the plane, if we put the starting point 
at the origin it is easy to understand its size and direction relative to other vectors. 

 
 
To scale vectors by a constant, such as u


3 , we can imagine adding uuu


 .  The result 

will be a vector three times as long in the same direction as the original vector.  If we 
were to scale a vector by a negative number, such as u


 , we can envision this as the 

opposite of u


; the vector so that )( uu


  returns us to the starting point.  This vector 
would point in the opposite direction as u


. 

 
Another way to think about scaling a vector is to maintain its direction and multiply its 
length by a constant, so that u


3 would point in the same direction but will be 3 times as 

long. 
 
 
 

u


v


 

u v
 

 

u
 v


 

u


v


 

u v
 
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Scaling a Vector Geometrically 

To geometrically scale a vector by a constant, scale the length of the vector by the 
constant. 
 
Scaling a vector by a negative constant will reverse the direction of the vector. 

 
 
Example 3 

Given the vector shown, draw u


3 , u


 , and u


2  
 
 
The vector u


3  will be three times as long.  The vector u


  will have the same length 

but point in the opposite direction.  The vector u


2  will point in the opposite direction 
and be twice as long. 
 
 
 
 
 

 
 
By combining scaling and addition, we can find the difference between vectors 
geometrically as well, since )( vuvu


  

 
 
Example 4 

Given the vectors shown, draw vu


  
 
 
 
 
 
 
From the end of u


 we draw v


 , then draw in the result.  

 
 
Notice that the sum and difference of two vectors are the two 
diagonals of a parallelogram with the vectors u


 and v


 as 

edges. 
 
 
 
 
Try it Now 

2. Using vector, v


from try it now #1, draw v


2   

u


3u


 
u


 
2u


 

u
v


 

u v
 

 

u
 v


 

u
v


 

u v
 

 

u


v


 

u v
 
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Component Form of Vectors 
While the geometric interpretation of vectors gives us an intuitive understanding of 
vectors, it does not provide us a convenient way to do calculations.  For that, we need a 
handy way to represent vectors.  Since a vector involves a length and direction, it would 
be logical to want to represent a vector using a length and an angle θ, usually measured 
from standard position.   

 
 
 
Magnitude and Direction of a Vector 

A vector u


 can be described by its magnitude, or length, u


, and an angle θ. 

 
 
While this is very reasonable, and a common way to describe vectors, it is often more 
convenient for calculations to represent a vector by horizontal and vertical components. 
 
 
Component Form of a Vector 

The component form of a vector represents the vector using two components.  
yxu ,


 indicate the vector moves x horizontally and y vertically.   

 
 
Notice how we can see the magnitude of the vector as the hypotenuse of a right triangle, 
or in polar form as the radius. 

 
 
Alternate Notation for Vector Components 

Sometimes you may see vectors written as the combination of unit vectors i


 and j


, 

where  i


 points the right and j


 points up.  In other words, 0,1i


 and 1,0j


. 

 
In this notation, the vector 4,3 u


 would be written as jiu


43   

 
 
While it can be convenient to think of the vector yxu ,


 as a vector from the origin to 

the point (x, y), be sure to remember that most vectors can be located anywhere in the 
plane, and simply indicate a movement in the plane. 
 
 

u


θ 

u


θ 
x

y 
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It is common to need to convert from a magnitude and angle to the component form of 
the vector and vice versa.  Happily, this process is identical to converting from polar 
coordinates to Cartesian coordinates or from the polar form of complex numbers to the 
a+bi , or x+yi form. 
 
 
Example 5 

Find the component form of a vector with length 7 at an angle of 135 degrees. 
 
Using the conversion formulas )cos(rx   and )sin(ry  , we can find the 
components 

2

27
)135cos(7 x  

2

27
)135sin(7 y  

 

This vector can be written in component form as 
2

27
,

2

27
  

 
 
Example 6 

Find the magnitude and angle   representative of the vector 2,3 u


 

 
First we can find the magnitude by remembering the relationship between x, y and r: 

13)2(3 222 r  

13r  
 
Second we can find the angle.  Using the tangent, 

3

2
)tan(


  







  69.33

3

2
tan 1 , or written as a coterminal positive angle, 326.31° because 

we know our point lies in the 4th quadrant. 
 

 
 
Try it Now 

3. Using vector, v


from Try it Now 1, the vector that travels from the origin to the 
point (3, 5), find the components, magnitude and angle   that represent this vector. 
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In addition to representing distance movements, vectors are commonly used in physics 
and engineering to represent any quantity that has both direction and magnitude, 
including velocities and forces.  
 
 
Example 7 

An object is launched with initial velocity 200 meters per second at an angle of 30 
degrees.  Find the initial horizontal and vertical velocities.  
 
By viewing the initial velocity as a vector, we can resolve the vector into horizontal and 
vertical components.     

205.173
2

3
200)30cos(200 x  m/sec 

100
2

1
200)30sin(200 y  m/sec 

 
This tells us that, absent wind resistance, the object will travel horizontally at about 173 
meters each second.  The vertical velocity will change due to gravity, but could be used 
with physics formulas or calculus to determine when the object would hit the ground. 

 
 
Adding and Scaling Vectors in Component Form 
To add vectors in component form, we can simply add the like components.  To scale a 
vector by a constant, we scale each component by that constant. 
 
 
Combining Vectors in Component Form 

To add, subtract, or scale vectors in component form 
If 21 ,uuu 


, 21 ,vvv 


, and c is any constant, then 

2211 , vuvuvu 


 

2211 , vuvuvu 


 

21 ,cucuuc 


 

 
 
Example 8 

Given 2,3 u


 and 4,1v


, find a new vector vuw


23   

Using the vectors given, 
vuw


23   
    4,122,33    Scale each vector 

    8,26,9    Subtract like components 

    14,11   

 

200 m/s 

30° 
173 m/s 

100 m/s
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By representing vectors in component form, we can find the final displacement vector 
after a multitude of movements without needing to draw a lot of complicated non-right 
triangles.  For a simple example, we revisit the problem from the opening of the section.  
The general procedure we will follow is: 

1) Convert vectors to component form 
2) Add the components of the vectors  
3) Convert back to length and direction if needed to suit the context of the question 

 
 
Example 9 

A woman leaves home, walks 3 miles north, then 2 miles southeast.  How far is she 
from home, and what direction would she need to walk to return home?  How far has 
she walked by the time she gets home? 
 
Let’s begin by understanding the question in a little more depth.  
When we use vectors to describe a traveling direction, we often 
position things so North points in the upwards direction, East 
points to the right, and so on, as pictured here. 
 
Consequently, travelling NW, SW, NE or SE, means we are 
travelling through the quadrant bordered by the given directions 
at a 45 degree angle. 
 
With this in mind we begin by converting each vector to components.   
A walk 3 miles north would, in components, be 3,0 .   

A walk of 2 miles southeast would be at an angle of 45° South of East, or measuring 
from standard position the angle would be 315°.   
 
Converting to components, we choose to use the standard position angle so that we do 
not have to worry about whether the signs are negative or positive; they will work out 
automatically. 

414.1,414.1
2

2
2,

2

2
2)315sin(2),315cos(2 


  

 
Adding these vectors gives the sum of the movements in component 
form 

586.1,414.1414.1,414.13,0   

 
To find how far she is from home and the direction she would need to walk to return 
home, we could find the magnitude and angle of this vector. 
 

Length = 125.2586.1414.1 22   
 
 

3 

2 

N
NE

E

SE
S 

SW 

W 

NW 
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To find the angle, we can use the tangent 

414.1

586.1
)tan(   







  273.48

414.1

586.1
tan 1  North of East 

 
Of course, this is the angle from her starting point to her ending point.  To return home, 
she would need to head the opposite direction, which we could either describe as 
180°+48.273° = 228.273° measured in standard position, or as 48.273° South of West 
(or 41.727° West of South).   
 
She has walked a total distance of 3 + 2 + 2.125 = 7.125 miles.  
 
Keep in mind that total distance travelled is not the same as the final displacement 
vector or the “return” vector. 

 
 
Try it Now 

4. In a scavenger hunt directions are given to find a buried treasure.  From a starting 
point at a flag pole you must walk 30 feet east, turn 30 degrees to the north and 
travel 50 feet, and then turn due south and travel 75 feet.  Sketch a picture of these 
vectors, find their components and calculate how far and in what direction must you 
travel to go directly to the treasure from the flag pole without following the map? 

 
 
While using vectors is not much faster than using law of cosines with only two 
movements, when combining three or more movements, forces, or other vector 
quantities, using vectors quickly becomes much more efficient than trying to use 
triangles. 
 
 
Example 10 

Three forces are acting on an object as shown below.  What force must be exerted to 
keep the object in equilibrium, where the sum of the forces is zero. 

 
 
We start by resolving each vector into components. 
 
 

30° 

6 N 
7 N 

4 N 
300° 
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The first vector with magnitude 6 Newtons at an angle of 30 degrees will have 
components 

3,33
2

1
6,

2

3
6)30sin(6),30cos(6   

 
The second vector is only in the horizontal direction, so can be written as 0,7  

 
The third vector with magnitude 4 Newtons at an angle of 300 degrees will have 
components 

32,2
2

3
4,

2

1
4)300sin(4),300cos(4 


  

 
To keep the object in equilibrium, we need to find a force vector yx,  so the sum of 

the four vectors is the zero vector, 0,0 .   

3 3, 3 7, 0 2, 2 3 , 0, 0x y       Add component-wise 

3 3 7 2, 3 0 2 3 , 0, 0x y        Simplify 

3 3 5, 3 2 3 , 0, 0x y       Solve 

, 0, 0 3 3 5, 3 2 3x y      

, 3 3 5, 3 2 3 0.196, 0.464x y         

 
This vector gives in components the force that would need to be applied to keep the 
object in equilibrium.  If desired, we could find the magnitude of this force and 
direction it would need to be applied in. 

Magnitude = 504.0464.0)196.0( 22   

Angle: 

196.0

464.0
)tan(


  










  089.67
196.0

464.0
tan 1 .   

This is in the wrong quadrant, so we adjust by finding the next angle with the same 
tangent value by adding a full period of tangent: 

 911.112180089.67  
 
To keep the object in equilibrium, a force of 0.504 Newtons would need to be applied at 
an angle of 112.911°. 
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Important Topics of This Section 
Vectors, magnitude (length) & direction 
Addition of vectors 
Scaling of vectors 
Components of vectors 
Vectors as velocity 
Vectors as forces 
Adding & Scaling vectors in component form 
Total distance travelled vs. total displacement 

 
 
Try it Now Answers 

1 &   2.  

3. 





  04.59

3

5
tan,345,3 1magnitudev  

 
4.  
 
 
 
 
 
 
 
 

1 2 330,0 50cos(30 ),50sin(30 ) 0, 75

30 50cos(30 ),50sin(30 ) 75 73.301, 50

magnitude 58.83 feet at an angle of 34.3 south of east.

f

v v v

v

     

      

 

  

 

v


2v


 

75 ft 

50 ft 
30 ft 
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Section 8.4 Exercises 
 
Write the vector shown in component form 

1.   2.  
 
Given the vectors shown, sketch u v

 
, u v
 

, and 2u


 

3.   4.  
 
Write each vector below as a combination of the vectors u


 and v


 from question #3. 

5.   6.  
 
From the given magnitude and direction in standard position, write the vector in 
component form. 
7. Magnitude: 6, Direction: 45°  8. Magnitude: 10, Direction: 120°   
9. Magnitude: 8, Direction: 220°  10. Magnitude: 7, Direction: 305° 
 
Find the magnitude and direction of the vector 
11. 4,0   12. 0,3   13. 5,6   14. 7,3    

15. 1,2   16. 13,10   17. 5,2    18. 4,8     

19. 6,4    20. 9,1   

 
Using the vectors given, compute u v

 
, u v
 

, and 2 3u v
 

 
21. 5,1, 3,2  vu


   22. 1,2, 4,3  vu


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23. A woman leaves home and walks 3 miles west, then 2 miles southwest.  How far 
from home is she, and what direction must she walk to head directly home? 
 

24. A boat leaves the marina and sails 6 miles north, then 2 miles northeast.  How far 
from the marina is the boat, and what direction must it sail to head directly back to the 
marina? 
 

25. A person starts walking from home and walks 4 miles East, 2 miles Southeast, 5 
miles South, 4 miles Southwest, and 2 miles East.  How far total have they walked?  
If they walked straight home, how far would they have to walk? 
 

26. A person starts walking from home and walks 4 miles East, 7 miles Southeast, 6 
miles South, 5 miles Southwest, and 3 miles East.  How far total have they walked?  
If they walked straight home, how far would they have to walk? 
 

27. Three forces act on an object: 7,4,1,0, 5,8 321  FFF


.  Find the net 

force on the object. 
 

28. Three forces act on an object: 7,0,3,8, 5,2 321  FFF


.  Find the net force 

on the object. 
 

29. A person starts walking from home and walks 3 miles at 20° North of West, then 5 
miles at 10° West of South, then 4 miles at 15° North of East.  If they walked straight 
home, how far would they have to walk, and in what direction? 
 

30. A person starts walking from home and walks 6 miles at 40° North of East, then 2 
miles at 15° East of South, then 5 miles at 30° South of West.  If they walked straight 
home, how far would they have to walk, and in what direction? 
 

31. An airplane is heading north at an airspeed of 600 km/hr, but there is a wind blowing 
from the southwest at 80 km/hr.  How many degrees off course will the plane end up 
flying, and what is the plane’s speed relative to the ground? 
 

32. An airplane is heading north at an airspeed of 500 km/hr, but there is a wind blowing 
from the northwest at 50 km/hr.  How many degrees off course will the plane end up 
flying, and what is the plane’s speed relative to the ground? 
 

33. An airplane needs to head due north, but there is a wind blowing from the southwest 
at 60 km/hr.  The plane flies with an airspeed of 550 km/hr.  To end up flying due 
north, the pilot will need to fly the plane how many degrees west of north? 



  Section 8.4 Vectors  503 
 

 

 
34. An airplane needs to head due north, but there is a wind blowing from the northwest 

at 80 km/hr.  The plane flies with an airspeed of 500 km/hr.  To end up flying due 
north, the pilot will need to fly the plane how many degrees west of north? 
 

35. As part of a video game, the point (5, 7) is rotated counterclockwise about the origin 
through an angle of 35 degrees.  Find the new coordinates of this point. 
 

36. As part of a video game, the point (7, 3) is rotated counterclockwise about the origin 
through an angle of 40 degrees.  Find the new coordinates of this point. 
 

37. Two children are throwing a ball back-and-forth straight across the back seat of a car. 
The ball is being thrown 10 mph relative to the car, and the car is travelling 25 mph 
down the road.  If one child doesn't catch the ball and it flies out the window, in what 
direction does the ball fly (ignoring wind resistance)? 
 

38. Two children are throwing a ball back-and-forth straight across the back seat of a car. 
The ball is being thrown 8 mph relative to the car, and the car is travelling 45 mph 
down the road.  If one child doesn't catch the ball and it flies out the window, in what 
direction does the ball fly (ignoring wind resistance)? 
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Section 8.5 Parametric Equations 
 
Many shapes, even ones as simple as circles, cannot be represented in a form where y is a 
function of x.  Consider, for example, the path a moon follows as it orbits around a planet 
which simultaneously rotates around a sun.  In some cases, polar equations provide a way 
to represent these shapes using functions.  In others, we need a more versatile approach 
that allows us to represent both the x and y coordinates in terms of a third variable or 
parameter. 
 
 
Parametric Equation 

A parametric equation is a pair of functions x(t) and y(t) in which the x and y 
coordinates are the output, represented in terms of a third input parameter, t.  

 
 
Example 1 

Moving at a constant speed, an object moves from coordinates (-5,3) to the coordinates 
(3,-1) in 4 seconds, where the coordinates are measured in meters.  Find parametric 
equations for the position of the object. 
 
The x coordinate of the object starts at -5 meters, and goes to +3 meters, this means the 
x direction has changed by 8 meters in 4 seconds, giving us a rate of 2 meters per 
second.  We can now write the x coordinate as a linear function with respect to time, t, 

ttx 25)(  .  Similarly, the y value starts at 3 and goes to -1, giving a change in y 
value of 4 meters, meaning the y values have decreased by 
4 meters in 4 seconds, for a rate of -1 meter per second, 
giving equation tty  3)( .  Together, these are the 
parametric equation for the position of the object: 

tty

ttx




3)(

25)(
 

 
Using these equations, we can build a table of t, x, and y 
values.  Because of the context, we limited ourselves to non-negative t values for this 
example, but in general you can use any values. 
 
From this table, we could create three possible graphs: a graph of x vs. t, which would 
show the horizontal position over time, a graph of y vs. t, which would show the vertical 
position over time, or a graph of y vs. x, showing the position of the object.  This last 
graph is the one most commonly used.   
 
 
 
 
 

t x y 
0 -5 3 
1 -3 2 
2 -1 1 
3 1 0 
4 3 -1 
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Position of x as a function of time   Position of y as a function of time 
 

                                
 
Position of y relative to x 

 
 
Notice that the parameter t does not explicitly show up in this 3rd graph.  Sometimes, 
when the parameter t does represent a quantity like time we might indicate the direction 
of movement on the graph using an arrow. 
 

 
 
 
 
 
 
 
 

t 

x y 

t 

x 

y 

y 

x 
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Example 2 
Sketch a graph of  

tty

ttx




2)(

1)( 2

 

 
We can begin by creating a table of values.  From this table, we 
can plot the points and sketch in a rough graph of the curve and 
indicate the direction it travels with respect to time by using 
arrows. 
 

 
 
 
Notice that here the parametric equations provide a pair of functions that can describe a 
shape for which y is not a function of x.  This is an example of why using parametric 
equations can be useful – since they can represent an equation as a set of functions. 
 
While plotting points is always an option for graphing, and is necessary in some cases 
like the last one, we can also use technology to sketch parametric equations – one of their 
primary benefits over complex non-functional equations in x and y. 
 
Example 3 

Sketch a graph of 
)sin(3)(

)cos(2)(

tty

ttx




 

 
Using technology we can generate a graph of this 
equation, producing an ellipse shape. 
 
Similar to graphing polar equations, you must change the 
MODE on your calculator or select parametric equations 
on your graphing technology before graphing a 
parametric equation.  You will know you have 
successfully entered parametric mode when the equation 
input has changed to ask for a x(t)= and y(t)= pair of equations.   
 

 

t x y 
-3 10 -1 
-2 5 0 
-1 2 1 
0 1 2 
1 2 3 
2 5 4 

x 

y 

x 

y 
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Try it Now 

1. Sketch a graph of  
)2sin(3)(

)3cos(4)(

tty

ttx




.  This is an example of a Lissajous figure. 

 
 
Example 4 

The populations of rabbits and wolves on an island are given by the graphs below.  Use 
the graphs as pieces of a parametric equation and sketch the populations in a r-w plane. 
 

0

5

10

15

20

0 1 2 3 4 5 6 7

Years

W
o

lv
es

 
For each input t, we can determine the number of rabbits, r, and the number of wolves, 
w, from the respective graphs, and then plot the corresponding point in the r-w plane.   
 

0
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80

100
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R
ab

b
it

s

 
This graph helps reveal the cyclical interaction between the two populations. 

 
 
Converting from Parametric to Cartesian 
In some cases, it is possible to eliminate the parameter t, allowing you to write a pair of 
parametric equations as a Cartesian equation. 
 
It is easiest to do this if one piece of parametric equations can easily be solved for t, 
allowing you to then substitute the remaining expression into the second part. 
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Example 6 

Write 
tty

ttx




2)(

1)( 2

 as a Cartesian equation if possible. 

 
Here, the equation for y is linear, so is relatively easy to solve for t.  Since the resulting 
Cartesian equation will likely not be a function, and for convenience, we drop the 
function notation. 

ty  2   Solve for t 
ty  2   Substitute this for t in the x equation 

1)2( 2  yx  
 
Although this is written as x(y) instead of the more common form y(x), this equation 
provides a Cartesian equation equivalent to the parametric equation. 

 
 
Try it Now 

2. Write   
6

3

)(

)(

tty

ttx




as a Cartesian equation if possible. 

 
 
Example 7 

Write 
)log()(

2)(

tty

ttx




 as a Cartesian equation if possible. 

 
We could solve either the first or second equation for t.  Solving the first, 

2 tx  

tx  2   Square both sides 

  tx  22   Substitute into the y equation 

  22log  xy  
 
Since the parametric equation is only defined for 0t , this Cartesian equation is 
equivalent to the parametric equation on the corresponding domain. To find the 
corresponding domain we solve for x when t = 0 to find 2x . 

 
 
In the case above, the parametric equation and Cartesian equations did not have the same 
domain and range.  To ensure that the Cartesian equation is as equivalent as possible to 
the original parametric equation, we try to avoid using domain-restricted inverse 
functions, such as the inverse trig functions, when possible.  For equations involving trig 
functions, we often try to find an identity to utilize to avoid the inverse functions. 
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Example 8 

Write 
)sin(3)(

)cos(2)(

tty

ttx




 as a Cartesian equation if possible. 

 
To rewrite this, we can utilize the Pythagorean identity 1)(sin)(cos 22  tt . 

)cos(2 tx   so )cos(
2

t
x
  

)sin(3 ty   so )sin(
3

t
y
  

 
Starting with the Pythagorean Identity 
 

1)(sin)(cos 22  tt   Substitute in the expressions from our parametric equation 

1
32

22














 yx

  Simplify 

1
94

22


yx

 

 
This is the Cartesian equation for the ellipse we graphed earlier. 

 
 
Parameterizing Curves 
While converting a parametric equation to Cartesian can be useful, it is often more useful 
to parameterize a Cartesian equation – converting it into a parametric equation. 
 
If the Cartesian equation is already a function, then parameterization is trivial – the 
independent variable in the function can simply be defined as t. 
 
 
Example 9 

Parameterize the equation yyx 23   
 
In this equation, x is expressed as a function of y.  By defining ty   we can then 

substitute that into the Cartesian equation providing ttx 23  .  Together, this produces 
the parametric equation: 
 

tty

tttx




)(

2)( 3

 

 
 
Try it Now 

3. Write   322  yx as a parametric equation if possible. 
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In addition to parameterizing Cartesian equations, we also can parameterize behaviors 
and movements. 
 
 
Example 10 

A robot follows the path shown.  Create a table of values for the x(t) and y(t) functions.   
 

 
 
Since we know the direction of motion, we can introduce consecutive values for t along 
the path of the robot.  Using these values with the x and y coordinates of the robot, we 
can create the tables.  For example, we designate the starting point, at (1, 1), as the 
position at t = 0, the next point at (3, 1) as the position at t = 1, and so on. 
 
 
 
 
Notice how this also ties back to vectors.  The journey of the robot as it moves through 
the Cartesian plane could also be displayed as vectors and total distance and 
displacement could be calculated. 

 
 
Example 11 

A light is placed on the edge of a bicycle tire as shown and the bicycle starts rolling 
down the street.  Find a parametric equation for the position of the light after the wheel 
has rotated through an angle of θ. 
 

 
 
Relative to the center of the wheel, the position of the light can be found as the 
coordinates of a point on a circle, but since the x coordinate begins at 0 and moves in 
the negative direction, while the y coordinate starts at the lowest value, the coordinates 
of the point will be given by: 

θ

Starting Rotated by θ 

r 

t 0 1 2 3 4 5 6 
x 1 3 3 2 4 1 1 

t 0 1 2 3 4 5 6 
y 1 1 2 2 4 5 4 
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)cos(

)sin(




ry

rx




 

 
The center of the wheel, however, is moving horizontally.  It remains at a constant 
height of r, but the horizontal position will move a distance equivalent to the arclength 
of the circle drawn out by the angle, rs  .  The position of the center of the circle is 
then 

ry

rx


 

 

 
Combining the position of the center of the wheel with relative position of the light on 
the wheel we get the parametric equation, with θ as the parameter. 

 
 )cos(1)cos(

)sin()sin(







rrry

rrrx
 

 
The result graph is called a cycloid. 

 
 
 
 
Example 12 

A moon travels around a planet 
as shown, orbiting once every 10 
days.  The planet travels around a 
sun as shown, orbiting once 
every 100 days.  Find a 
parametric equation for the 
position of the moon after t days. 
 
 
The coordinates of a point on a 
circle can always be written in 
the form 

)sin(

)cos(




ry

rx




 

 
 

6 
30 
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Since the orbit of the moon around the planet has a period of 10 days, the equation for 
the position of the moon relative to the planet will be 

















tty

ttx

10

2
sin6)(

10

2
cos6)(





 

 
With a period of 100 days, the equation for the position of the planet relative to the sun 
will be 

















tty

ttx

100

2
sin30)(

100

2
cos30)(





 

 
Combining these together, we can find the 
position of the moon relative to the sun as the 
sum of the components. 































ttty

tttx

100

2
sin30

10

2
sin6)(

100

2
cos30

10

2
cos6)(





 

 
The resulting graph is shown here. 
 

 
 
Try it Now 

4. A wheel of radius 4 is rolled around the outside of a circle of radius 7.  Find a 
parametric equation for the position of a point on the boundary of the smaller wheel.  
This shape is called an epicycloid. 

 
 
Important Topics of This Section 

Parametric equations 
Graphing x(t) , y(t) and the corresponding x-y graph 
Sketching graphs and building a table of values 
Converting parametric to Cartesian 
Converting Cartesian to parametric (parameterizing curves) 
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Try it Now Answers 

1.  
2. 2xy   
 

3. 
)sin(3)(

)cos(3)(

tty

ttx




 

 

4. 

 

 

11
( ) 11cos 4cos

4

11
( ) 11sin 4sin

4

x t t t

y t t t

    
 
    
 
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Section 8.5 Exercises 
 
Match each of the equations with one of the graphs below. 

1. 
 
  2 1

x t t

y t t

 
  

  2. 
 
  2

1x t t

y t t

  
 

  3. 
   
   

4sin

2cos

x t t

y t t

 
 

  

4. 
 
 

2sin( )

4cos( )

x t t

y t t

 
 

  5. 
 
 

2

3 2

x t t

y t t

  
  

  6. 
 
 

2 2

3

x t t

y t t

   
  

  

A  B  C  

D  E  F  
 
From each pair of graphs in the x-t and y-t planes shown, sketch a graph in the x-y plane. 

7.   8.  
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From each graph in the x-y plane shown, sketch a graph of the parameter functions in the 
x-t and y-t planes. 
 

9.   10.  
 
 
Sketch the parametric equation for 2 2t    

11. 
 
  2

1 2x t t

y t t

  
 

    12. 
 
  3

2 2x t t

y t t

  
 

  

 
 
Eliminate the parameter t to rewrite the parametric equation as a Cartesian equation 

13. 
 
 

5

8 2

x t t

y t t

  
  

    14. 
 
 

6 3

10

x t t

y t t

  
  

  

15. 
 
 

2 1

3

x t t

y t t

  



    16. 

 
  2

3 1

2

x t t

y t t

  
 

  

17. 
 
 

2

1 5

tx t e

y t t

 
  

    18. 
   
 

4log

3 2

x t t

y t t

 
  

  

19. 
 
 

3

2

x t t t

y t t

  
 

    20. 
 
 

4

2

x t t t

y t t

  
  

  

21. 
 
 

2

6

t

t

x t e

y t e

 
 

    22. 
 
 

5

10

x t t

y t t

 
 

  

23. 
   
   

4cos

5sin  

x t t

y t t

 
 

    24. 
   
   

3sin

6cos

x t t

y t t

 
 

  

 

 
 
 
 



516  Chapter 8 
 

 

Parameterize (write a parametric equation for) each Cartesian equation  
25.   23 3y x x      26.    2sin 1y x x    

27.    3logx y y y      28.   2x y y y   

29. 
2 2

1
4 9

x y
      30. 

2 2

1
16 36

x y
    

 
Parameterize the graphs shown 

31.    32.  
 

33.    34.  
 
35. Parameterize the line from ( 1,5)  to (2,3)  so that the line is at ( 1,5)  at t = 0, and at 

(2, 3)  at t = 1. 

 
36. Parameterize the line from (4,1)  to (6, 2)  so that the line is at (4,1)  at t = 0, and at 

(6, 2)  at t = 1. 

 
 
 
 
 
 
 



  Section 8.5 Parametric Equations  517 
 

 

The graphs below are created by parameteric equations of the form 
   
   

cos

sin

x t a bt

y t c dt

 
 

.  

Find the values of a, b, c, and d to achieve each graph. 
 

37.   38.  
 

39.   40.  
 
41. An object is thrown in the air with vertical velocity 20 ft/s and horizontal velocity 15 

ft/s.  The object’s height can be described by the equation   216 20y t t t   , while 

the object moves horizontally with constant velocity 15 ft/s.  Write parametric 
equations for the object’s position, then eliminate time to write height as a function of 
horizontal position. 
 

42. A skateboarder riding at a constant 9 ft/s throws a ball in the air, the height of which 

can be described by the equation   216 10 5y t t t    .  Write parametric equations 

for the ball’s position, then eliminate time to write height as a function of horizontal 
position. 
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43. A carnival ride has a large rotating arm with 

diameter 40 feet centered 35 feet off the ground.  
At each end of the large arm are two smaller 
rotating arms with diameter 16 feet each.  The 
larger arm rotates once every 5 seconds, while the 
smaller arms rotate once every 2 seconds.  If you 
board the ride when the point P is closest to the 
ground, write a parametric equation for your 
position over time.  

 
44. A hypocycloid is a shape is the shape generated by 

tracking a fixed point on a small circle as it rolls around 
the inside of a larger circle.  If the smaller circle has 
radius 1 and the large circle has radius 6, find parametric 
equations for the position of the point P as the smaller 
wheel rolls in the direction indicated. 

 
 

P 

P
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