LESSON PLAN (SEPTEMBER :2022)

Name of faculty

Discipline

Semester

Subject

Lesson Plan Duration

SUNIL KUMAR

Mechanical Engineering

3RD Semester

STRENGTH OF MATERIALS

15 weeks

Work load (Lecture/ Practical) per week (in hours)

3 Hours Lecture & 2 Hours Practical

	THEORY			PRACTICAL		
WEEK	Day		Day	Practical		
	Lecture	Topic(Including Assignment/Test)	Practical	Торіс		
1	1	Unit – 1 1.1. Basic concept of load, stress and	1	Tensile test on bars of Mild steel		
		strain		and Aluminium.		
		1.2. Tensile, compressive and shear stresses				
	2	1.3. Linear strain, Lateral strain, Shear strain,				
		Volumetric strain.				
		1.4 Concept of Elasticity, Elastic limit and limit				
		of proportionality				
	3	1.5 Hook's Law and Elastic Constants	2	Tensile test on bars of Mild steel.		
		1.6. Stress-strain curve for ductile and brittle				
		materials				
2	4	1.7 Nominal stress	3	Tensile test on bars of		
		1.8 Yield point, plastic stage		Aluminium.		
	5	1.9 Ultimate stress and breaking stress				
	_	1.10 Percentage elongation	-			
	6	1.11 Proof stress and working stress	4	Tensile test on bars of		
_		1.12. Factor of safety	_	Aluminium.		
3	7	1.13 Poisson's Ratio	5	Bending tests on a steel bar.		
		1.14 Thermal stress and strain	-			
	8	1.15 Longitudinal and circumferential stresses	6	Bending tests on a steel bar.		
		in seamless thin walled cylindrical shells.				
		1.16 Introduction to Principal stresses.				
	0	Assignment No1.				
	9	Unit – 2 2.1 Strain Energy, Resilience, proof				
Λ	10	2.2 Strain anargy due to direct stragges and	7	Donding tosts on a wooden hear		
4	10	2.2 Strain energy due to direct stresses and Shear Stress	/	Bending tests on a wooden beam.		
	11	2.2 Strossos duo to gradual suddon and falling				
	11	2.5 Stresses due to gradual, sudden and falling				
	10	Unit 321 Concent of memory of insertio	0	Ponding tasts on a woodon beem		
	12	and second moment of area	0	benuing tests on a wooden beam.		
г	10	and second moment of area	0	Vivo		
2	13	5.2 Radius of gyration	Э	VIVa		

	14	3.3 Theorem of perpendicular axis and parallel		
		axis (with derivation)		
	15	1 st Class Test.	10	Viva
6 16		3.4 Second moment of area of common	11	Viva
		geometrical sections : Rectangle, Triangle,		
		Circle (without derivation); Second moment of		
		area for L,T and I section		
	17	3.5 Section modulus.	12	Viva
	18	Unit – 4 4.1 Concept of various types of		
		beams		
7	19	4.1 Concept of various form of loading	13	Viva
	20	4.2 Concept of end supports-Roller,		
	21	4.2 Concept of hinged and fixed	14	Viva
8	22	4.3 Concept of bending moment and shearing	15	Viva
		force & Assignment No -2		
		Torce & Assignment 102.		
	23	1 st Sessional Test.		
	24	4.4 B.M. and S.F. Diagram for cantilever and	16	Viva
		simply supported beams with overhang		
		subjected to concentrated and U.D.L.		
9	25	4.4 B.M. and S.F. Diagram for cantilever and	17	Impact test on metals
		simply supported beams without overhang		a) Izod test
		subjected to concentrated and U.D.L.		
	26	Unit – 5 5.1 Concept of Bending stresses	18	Impact test on metals
		5.2. Theory of simple bending, Derivation of		a) Izod test
		Bending Equation	-	
	27	2 ^{rm} Class Test		-
10	28	5.3. Use of the equation $\frac{M}{I} = \frac{\sigma}{\gamma} = \frac{B}{R}$	19	Impact test on metals
	29	5.4. Concept of moment of resistance	b) charpy test	
		5.5. Bending stress diagram		
	30	5.6 Section modulus for rectangular, circular	20	Impact test on metals
		and symmetrical I section.		b) Charpy test
11	31	5.7. Calculation of maximum bending stress in	21	Torsion test of solid specimen of
		because of restangular singular and Teastian		circular section of different
		beams of rectangular, circular, and T section.		metals for determining modulus
	22		-	of rigidity.
	32	Unit – 6 6.1. Concept of column, modes of		
		6.2. Types of columns, modes of failure of		
	22		22	
	33	0.5. Buckling load, crusning load	22	i orsion test of solid specimen of
		0.4. Sienderness ratio		circular section of different
		6.5. Effective length		metals for determining modulus
		0.0 EIIG RESITAINIS 6.7 Experience officiations at the set of a configuration		of rigidity.
12	24	0. / raciors effecting strength of a column	22	Vivo
12	54	0.0 Suengin of column by Euler Formula	23	VIVd

		without derivation		
	35	6.9. Rankine Gourdan formula (without	24	Viva
		derivation) Assignment No3.		
	36	2 nd Sessional Test]	
13	37	Unit – 7 7.1. Concept of torsion, difference	25	To plot a graph between load
		between torque and torsion.		and extension and to determine
	38	3 rd Class Test		the stiffness of a helical spring.
	39	7.2. Derivation of Torsion Equation, use of	26	To plot a graph between load
		torsion equation for circular shaft, (solid and		and extension and to determine
		hollow)		the stiffness of a helical spring.
14	40	7.3. Comparison between solid and hollow shaft	27	Hardness test on different
		with regard to their strength and weight.		metals.
	41	7.4. Power transmitted by shaft		
		7.5 Concept of mean and maximum torque.		
	42	Unit – 8 8.1. Closed coil helical springs	28	Hardness test on different
		subjected to axial load and calculation of:		metals.
		- Stress deformation		
15	43	- Stiffness and angle of twist and strain energy	29	Viva
		- Strain energy and proof resilience.		
	44	8.2. Determination of number of plates of	30	Viva
		laminated spring (semi elliptical		
		type only) & Assignment No4.		
	45	3 rd Sessional test		

LESSON PLAN (SEPTEMBER -2022)

Name of faculty	BALJINDER SINGH
Discipline	Mechanical Engineering
Semester	3 RD Semester
Subject	MECHANICAL ENGINEERING DRAWING
Lesson Plan Duration	15 weeks
Work load (Lecture/ Practical) per week (in hours)	6 Hours Practical

		PRACTICAL	
WEEK	Day Practical	Practical Topic	
1	1	1 Unit- 1 Limit, fits and tolerance Need of limit, fits and tolerance, Maximum limit of size minimum limit of size, tolerance, allowance, deviation, upper deviation, lower deviation, fundamental deviation, clearance, maximum clearance, minimum clearance. Fits – clearance fit, interference fit and transition fit	
	2	Hole basis system, shaft basis system, tolerance grades, calculating values of clearance, interference, hole tolerance, shaft tolerance with given basic size for common assemblies like H ₇ /g6, H ₇ /m6, H ₈ /p6. Basic terminology and symbols of geometrical dimensioning tolerances.	
2	3	Unit-2 Drawing of the following with complete dimensions, tolerances, bill of material and surface finish representation.	
	4	Universal coupling and Oldham coupling (Assembly)	
3	5	Bearings - Bushed Bearing (Assembly Drawing)	
	6	Ball Bearing and Roller Bearing (Assembled Drawing) & Assignment No1.	
4	7	Plummer Block (Detail and Assembly Drawing)	
	8	Foot step Bearing (Assembled Drawing)	
5	9	Pulleys, Function of pulley, Types and materials of Pulley	
	10	1 st Class Test	
6	11	Free hand Sketch of Various types of pulleys, Fast and loose pulley (Assembly Drawing)	
	12	Pipe Joints, Types of pipe Joints, Symbol and line layout of pipe lines	
7	13	Expansion pipe joint (Assembly drawing)	
	14	Flanged pipe and right angled bend joint (Assembly Drawing)	
8	15	1 st Sessional test	
	16	Lathe Tool Holder (Assembly Drawing), Reading and interpretation of mechanical components and assembly drawings. & Assignment No2.	
9	17	Sketching practice of bearings and bracket.	
	18	2 nd Class Test	
10	19	Unit- 3 Drilling Jig (Assembly Drawing)	
	20	Unit- 4 Machine vices (Assembly Drawing)	
11	21	Unit- 5 I.C. Engine Parts – Piston, Connecting rod (Assembly Drawing)	

	22	Crankshaft and flywheel (Assembly Drawing)
12	23	2 nd Sessional test
	24	Unit- 6 Boiler Parts, Steam Stop Valve (Assembly Drawing) & Assignment No3.
13	25	Blow off cock. (Assembly Drawing)
	26	3 rd Class Test
14	27	Unit- 7 Mechanical Screw Jack (Assembled Drawing)
	28	Unit- 8 Gears, Types of gears, Nomenclature of gears, conventional representation of gears
15	29	Draw the actual profile of involute teeth of spur gear by different methods.
		Assignment No4.
	30	3 rd Sessional test

LESSON PLAN (SEPTEMBER -2022)

THEORY
3 Hours Lecture
15 weeks
WORKSHOP TECHNOLOGY-1
3 RD Semester
Mechanical Engineering
PARDEEP

		THEORY	
WEEK	Dav		
	Lecture	Topic(Including Assignment/Test)	
	1	1.1 Welding Process -Principle of welding, Classification of welding processes,	
1	2	Advantages and limitations of welding, Industrial applications of welding,	
	3	Welding positions and techniques, symbols. Safety precautions in welding.	
	4	Gas Welding-Principle of operation, Types of gas welding flames and their applications,	
2	5	Gas welding equipment - Gas welding torch, Oxygen cylinder, acetylene cylinder, cutting	
	6	Ciller reds and fluxes and personal sofety equipment for welding	
	0	Filler rods and fluxes and personal safety equipment for weiging.	
3	/	arc welding - Principle of operation, Arc welding machines and equipment. A.C. and D.C. arc welding,	
	8	Effect of polarity, current regulation and voltage regulation, Electrodes: Classification,	
		B.I.S. specification and selection, Flux for arc welding.	
	9	Requirements of pre heating, post heating of electrodes and work piece. Welding defects	
		and their testing methods. & Assignment No1.	
	10	Other Welding Processes - Resistance welding: Principle, advantages, limitations, working	
4		and applications of spot welding, seam welding, projection welding and percussion welding,	
		Atomic hydrogen welding,	
	11 Shielded metal arc welding, submerged arc welding, Welding distort		
		methods of controlling welding defects and inspection of welded joints.	
	12	Modern Welding Methods - Methods, Principle of operation, advantages,	
	13	disadvantages and applications of, Tungsten inert gas (TIG) welding, Metal inert gas (MIG)	
5		welding, Thermit welding, Electro slag welding,	
	14	Electron beam welding, Ultrasonic welding, Laser beam welding, Robotic welding	
	15	1 st Class Test	
	16	Pattern Making - Types of pattern, Pattern material, Pattern allowances, Pattern codes as	
6		per B.I.S., Introduction to cores, core boxes.	
	17	core materials, Core making procedure, Core prints, positioning of cores.	
	18	Moulding Sand -Properties of moulding sand, their impact and control of properties viz.	
		permeability, refractoriness, adhesiveness, cohesiveness,	
	19	strength, flow ability, collapsibility, Various types of moulding sand, Testing of moulding	
7		sand. Safety precautions in foundry.	
	20	Mould Making - Types of moulds, Step involved in making a mould, Molding boxes, hand	
		tools used for mould making, Molding processes:	
	21	Bench molding, floor molding, pit molding and machine molding, Molding machines	
		squeeze machine, jolt squeeze machine and sand slinger.	

	22	1 st Sessional Test			
8	23	Casting Processes - Charging a furnace, melting and pouring both ferrous and non ferrous			
		metals, cleaning of castings, Principle,			
	24	working and applications of Die casting: hot chamber and cold chamber, Centrifugal casting			
		& Assignment No2.			
	25	Gating and Risering System - Elements of gating system, Pouring basin, sprue, runner,			
9		gates,			
	26	Types of risers, location of risers, Directional solidification			
	27	2 nd Class Test			
	28	Melting Furnaces - Construction and working of Pit furnace,			
10	29	Cupola furnace, Crucible furnace – tilting type, Electric furnace			
	30	Casting Defects - Different types of casting defects, Testing of defects:			
	31	radiography, magnetic particle inspection and ultrasonic inspection.			
11	32	3.1 Press Working - Types of presses, type of dies, selection of press die, die material.			
	33	Press Operations-Shearing, piercing, trimming, punching, notching, shaving, gearing,			
		embossing, stamping			
	34	3.2 Forging - Open die forging, closed die forging, Press forging, & Assignment No3.			
12	35	upset forging, swaging, up setters, roll forging, Cold and hot forging.			
	36	2 nd Sessional Test			
	37	3.3 Rolling - Elementary theory of rolling, Types of rolling mills,			
13	38	Thread rolling, roll passes, Rolling defects and remedies			
	39	3 rd Class Test			
	40	3.4 Extrusion and Drawing - Type of extrusion- Hot and Cold,			
14	41	Direct and indirect. Pipe drawing, tube drawing, wire drawing			
	42	4.1 Industrial use of plastics, and applications- Advantages and limitations of use of			
		plastics.			
	43	4.2 Injection moulding-principle, working of injection moulding machine.			
15	44	4.3 Compression moulding-principle, and working of compression moudling machine. &			
		Assignment No4.			
	45	3 rd Sessional Test			

LESSON PLAN

Name o	of Faculty	: SUN	NIL KUMAR				
Discipline : Mo				chanical Engineering			
Semest	er	: 3rd	Semeste	er			
Subject	t	: BEE	Е				
Lesson	Plan Duration	n: : 15 V	Veeks				
Work I	Load (Lecture	Practical) per week(in hours) :3Hrs.	Lectur	e 2 Practical			
We		Theory		Practical			
ek	Lecture Day	Topic(Including Assignement/Test)	Day	Торіс			
	1	Difference between ac and dc,		1. Connection of a three-phase motor and starter with			
1	2	various applications of electricity	1	fuses and reversing of direction of rotation (G-I)			
	3	advantages of electrical energy over other types of energy		Connection of a three-phase motor and starter with fuses and reversing of direction of rotation (G-II)			
	4	Definition of voltage, current, power and energy with their units,	_				
2	5	name of instruments used for measuring above quantities					
	6	connection of these instruments in an electric circuit					
	7	Revision of Unit I-II	3	2. Connection of a single-phase induction motor with supply and reversing of its direction of rotation (G-I)			
3	8	Electromagnetic induction-Faraday's Laws, Lenz's Law; Fleming's rules,		2 Connection of a single-phase induction motor with			
	9	Principles of a.c. Circuits; Alternating emf, Definition of cycle, frequency, amplitude and time period.		supply and reversing of its direction of rotation (G-II)			
	10	Instantaneous, average, r.m.s and maximum value of sinusoidal wave; form factor and Peak Factor.					
4	11	Concept of phase and phase difference.	5	3. Troubleshooting in domestic wiring system, including distribution board (G-I)			
	12	Concept of resistance, inductance and capacitance in simple a.c. circuit.		3. Troubleshooting in domestic wiring system, including			
	13	Power factor and improvement of power factor by use of capacitors.	6	distribution board (G-II)			
5	14	Concept of three phase system; star and delta connections; voltage and current relationship (no derivation)					
	15	1 st class test	7	Connection and reading of an electric energy meter (G-I)			
	16	1 st Sessional test		Connection and reading of an electric energy meter (G-			
6	17	Working principle and construction of single phase transformer,	8	II)			
	18	transformer ratio, emf equation,					

	19 20	losses and efficiency, cooling of transformers isolation transformer, CVT auto transformer (brief idea)	9	VIVA – VOCE
7	21 21	applications. Difference between high and low voltage distribution system	10	VIVA – VOCE
	22	identification of three-phase wires		
	23	eutral wire and earth wire in a low voltage distribution system	11	Use of ammeter, voltmeter, wattmeter, and multi-meter (G-I)
8	24	Identification of voltages between phases and between one phase and neutral		Use of ammeter, voltmeter, wattmeter, and multi-meter (G-II)
	25	Difference between three-phase and single-phase supply	12	
	26	Revision of Unit - V		
9	27	Description and applications of single- phase	13	Measurement of power and power factor in a given single phase ac circuit (G-I)
	28	three-phase motors.		Measurement of power and power factor in a given
	29	Connection and starting of three-phase induction motors by star-delta starter.	14	single phase ac circuit (G-II)
10	30	Changing direction of rotation of a given 3 phase induction motor.		
	31	Motors used for driving pumps, compressors, centrifuge, dyers etc	15	7. Study of different types of fuses, MCBs and ELCBs (G-I)
	32	Totally enclosed submersible and flame proof motors		
11	33	2nd class test	16	7. Study of different types of fuses, MCBs and ELCBs (G-II)
	34	2 nd Sessional test		
	35	Distinction between light-fan circuit and single phase power circuit, sub- circuits	17	8. Study of zener diode as a constant voltage source and to draw its V-I characteristics (G-I)
12	36	various accessories and parts of domestic electrical installation.		8. Study of zener diode as a constant voltage source and
	37	. Identification of wiring systems.	18	to draw its V-I characteristics (G-II)
	38	Common safety measures and earthing		
13	39	39 Electrical shock and precautions against shock, treatment of electric shock,	10	VIVA – VOCE
	40	concept of fuses and their classification, selection and application		
	41	concept of earthing and various types	20	VIVA – VOCE

		of earthing]	
	42	applications of MCBs and ELCBs		
14	43	Basic idea of semiconductors – P and N type		Study of earthing practices (G-I)
	44	diodes, zener diodes and their applications	21	
	45	transistor – PNP and NPN		Study of earthing practices (G-II)
15	46	their characteristics and uses.	22	
	47	Characteristics and applications of a thyristor		To draw V-I characteristics of a (i) NPN transistor (ii)
	48	, characteristics and applications of stepper motors	23	thyristor (SCR) (G-I)
16	49	servo motors in process control		. To draw V-I characteristics of a (i) NPN transistor (ii) thyristor (SCR) (G-II)
	50	3 rd class test	24	
17	51	3 rd seeional test		
			25	motor and (ii) servo motor (G-I)
			26	Study of construction and working of a (i) stepper motor and (ii) servo motor (G-II)

	LESSON PLAN (September -2022)					
Name of	f Faculty	: BHARAT BHUSHAN				
Discipli	ne	: Mechanical Engineering				
Semeste	r	: 3 rd Semester				
Subject		: THERMODYNAMICS –I				
Lesson I	Plan Duration:	: 15 Weeks				
Work Lo	pad (Lecture/H	Practical) per week(in hours) : 3Hrs. Lecture & 3	Practio	cal		
Week	Theory		Practical			
	Lecture Day	Topic(Including Assignement/Test)	Pract ical Day	Торіс		
1	1	Fundamental Concepts Thermodynamic state and system, boundary, surrounding, universe, thermodynamic systems – closed, open, isolated, adiabatic, homogeneous and heterogeneous, macroscopic and microscopic		Determination of temperature by thermocouple pyrometer Infrared		
	2	properties of system – intensive and extensive, thermodynamic equilibrium, quasi – static process, reversible and irreversible processes		thermometer		
	3	Zeroth law of thermodynamics				
2	4	definition of properties like pressure, volume, temperature, enthalpy and internal energy				
	5	Laws of Perfect Gases Definition of gases, explanation of perfect gas laws – Boyle's law, Charle's law, Avagadro's law, Regnault's law		Practical conduct		
	6	Universal gas constant, Characteristic gas constants and its derivation.				
3	7	Specific heat at constant pressure, specific heat at constant volume of a gas, derivation of an expression for specific heats with characteristics		Demonstration of mountings and		
	8	simple numerical problems on gas equation		accessories of a boiler.		
	9	Thermodynamic Processes Types of thermodynamic processes				
4	10	isochoric, isobaric, isothermal				
	11	adiabatic, isentropic, polytropic				
	12	throttling processes, equations representing the processes		Practical conduct		
5	13	Derivation of work done, change in internal energy,		Study the working		

		change in entropy, rate of heat transfer for the	of Lancashire boiler
		above process.	and Nestler boiler.
		1 st Class test	
	14		
	15	1 st sessional test	
	15		
		Laws of Thermodynamics Laws of conservation of	
	16	energy, first law of thermodynamics (Joule's	
		experiment) and its limitations	
	17	Application of first law of thermodynamics to Non-	
6		flow systems – Constant volume, Constant pressure,	Practical conduct
		Adiabatic and polytropic processes	
		steady flow energy equation, Application of steady	
	18	flow energy equation for turbines, pump, boilers,	
		compressors, nozzles, and evaporators.	
		Heat source and sink, statements of second laws of	
	19	thermodynamics: Kelvin Planck's statement, Classius	
		statement, equivalency of statements	Study of working of
7	20	Perpetual motion Machine of first kind, second kind	high pressure boiler
,			
	21	Carnot engine,	
	22	Introduction of third law of thermodynamics	
	22		
		concept of irreversibility and concept of entropy.	
8	23		Practical conduct
	24	Concept of ideal gas, enthalpy and specific heat	
		capacities of an ideal gas, $P - V - T$ surface of an	
		ideal gas	
9		triple point, real gases, Vander-Wall's equation	
	25		
			Study of boilers
	26	Formation of steam and related terms, thermodynamic	(Through industrial
		properties of steam, steam tables	vicit)
		sensible heat, latent heat, internal energy of steam,	VISIL
	27	entropy of water, entropy of steam, T- S diagrams,	
		Mollier diagram (H – S Chart)	
10		Expansion of steam, Hyperbolic, reversible adiabatic	
	28	and throttling processes, determination of quality of	
		Steam (dryness fraction)	
	29		VIVA
		2 nd sessional test	
	30	2 50551011a1 1051	

11	31	Uses of steam, classification of boilers, function of various boiler mounting and accessories	Determination of Dryness fraction of steam using calorimeter.
	32	comparison of fire tube and water tube boilers	
	33	Construction and working of Lancashire boiler, Nestler boiler, Babcock & Wilcox Boiler	
12	34	Introduction to modern boilers.	
	35	Meaning of air standard cycle – its use, condition of reversibility of a cycle	Practical conduct
	36	Description of Carnot cycle, Otto cycle	
13	37	Diesel cycle, simple problems on efficiency for different cycles.	Demonstrate the working of air compressor.
	38	Comparison of Otto, Diesel cycles for same compression ratio, same peak pressure developed and same heat input	
	39	Reasons for highest efficiency of Carnot cycle and all other cycles working between same temperature limits	
14	40	Functions of air compressor – uses of compressed air, type of air compressors	
	41	Single stage reciprocating air compressor, its construction and working, representation of processes involved on $P - V$ diagram, calculation of work done	Practical conduct
	42	Multistage compressors – advantages over single stage compressors, use of air cooler, condition of minimum work in two stage compressor (without proof) simple problems Multistage compressors	
15	43	3 rd class test	
	44	Rotary compressors – types, working and construction of centrifugal compressor, axial flow compressor, vane type compressor	VIVA
	45	3 rd sessional test	