GOVERNMENT POLYTECHNIC, DHANGAR (FATEHABAD)

ELECTRICAL ENGINEERING DEPARTMENT

SUBJECT – PLCM SEMESTER- 4th

Department of Electrical Engineering

Subject: PLCM Semester: 4t h

PLC is ...

- Similar to a Microcontroller:
 - Microprocessor Based
 - Onboard Memory for Storing Programs
 - Special Programming Language: Ladder Logic
 - Input/Output Ports

Dissimilar to Microcontrollers:

Intended for Industrial Applications

I/O Designed to interface with Control Relays

Emphasis on Maximum Reliability

PLC's APPLICATIONS

- Widely Applied in Every Industry
- Were Developed to Simplify the Implementation of Control Automation Systems in Plants and Assembly Lines
- Designed to Minimize the Number of Control Relays in a Process and Maximize the Ways Relays can be Used
- First Applied to Automobile Industry in the Late 1960's
- Flexible, Reliable and Low Cost

PLC Components

I/O Modules

Input Modules: Input Signals can be AC or DC, Analog or Digital

Output Modules: Outputs are either AC or DC Analog Signals (Although it is possible to 'Construct' Digital Outputs)

Modern PLC's have Expansion Ports to Increase the Number of Available Inputs and Outputs

Examples of I/O Signals

Inputs:

- Pushbutton (Energizing or Grounding an Input)
- Relay Contact Output
- DC Voltage Level
- Digital Logic Signal (+5V or 0 V, etc)

Outputs:

- 24 V ac
- 120 V ac
- 120 Vdc
- etcetera

PLC's Use Ladder Logic

- Ladder Logic Diagrams Provide a Method to Symbolically Show How Relay Control Schemes are Implemented
- Relay Contacts and Coils, Inputs and Outputs lie on "Rungs" Between the Positive and Ground Rails

Example of Ladder Diagram

Relays

 In General, Relays Transform a Control Signal into a Control Action

Relays Provide:

- Isolation Between Input and Output
- Leverage (Small Signal Can Control Large Action)
- Automation (Minimize Human Interaction with a Control Process)

Relay Applications

Relays can be Designed to Perform Many Functions

Detect Out of Limit Conditions on Voltages and Currents

Start Motors

Prevent Motors from Over Heating

Control Assembly Lines

Adjust Lighting

PLC Timers and Motor Protection

Industrial Communications

- RS-422 (EIA 422): Asynchronous Serial Communications, similar in many respects to RS-232
- Faster (up to 100 Kbps) than RS-232
- Better Noise Immunity
 - Differential (Balanced signal) Protocol
 - Makes use of Twisted Pair lines 1 pair for transmit, one pair for receive (4 Lines vs. 3)

EIA-422 Basics

- Can be 1 Master Transmitter feeding up to 10 Slave Receivers
- Can be Peer-to-Peer, like RS-232
- Data is sent and received via Differential Ports Common Mode Rejection (Noise common to both inputs is attenuated)

Twisted Pair also reduces EMI at low cost

EIA 485 (RS-485)

- □ More Modern, Faster and Flexible (supports TCP/IP)
- Since it uses a differential balanced line over twisted pair (like EIA-422), it can span relatively large distances (up to 4000 feet or just over 1200 metres).
- In contrast to EIA-422, which has a single driver circuit which cannot be switched off, EIA-485 drives need to be put in transmit mode explicitly by asserting a signal to the driver. This allows EIA-485 to implement linear topologies using only two lines.

IEEE 802.3 (Ethernet)

- Star Topology (Hub and spokes)
- Standard for computer networks since the 1990's
- Becoming more and more popular in Industrial settings
- Uses twisted pair data cables terminated in 8P8C (sometimes incorrectly called RJ45) modular plugs, wired according to TIA/EIA-568-B

Twisted Pair Cables

Twisting a pair of wires that act as a communication channel will:

- Minimize the loop area between the pair (minimize the self-inductance and capacitance)
- Which in turn tends to cancel out much of the electromagnetic interference from external sources and crosstalk from adjacent pairs
- Improve the efficiency of the channel

PLC Special Features

Time Delay Relays

Counter Relays

Special Functions

User Defined Functions

Special Bits

Time Delay Relays

- When TD Relay Pick-Up Coil is Energized, a Delay is Initiated
- Normally Open Contacts Wait to Close until Delay is Completed
- Normally Closed Contacts Wait to Open until Delay is Completed
- Very Useful for Creating a Sequence of Control Events

Making Use of Delays

Delay Motor Start While Alarm Sounds for Safety

Counters

- Counter Relays must "Count" a pre-determined number of events before changing contact status
- Can Count Up (UpCounter) or Count Down (DownCounter)
- e.g. An UpCounter is set to 8 and is programmed to detect every occurrence of a 5 Volt pulse. When it has detected 8 such occurrences, the NO Contacts close and the NC contacts open.
- Great for making Real-Time Clocks, etc

Special Functions

- Modern PLCs can perform many Math and Logic Functions without additional Ladder Logic Programming
 - Differentiation, Integration
 - +, -, *, /
 - Boolean Logic Functions (AND, NOT, OR)
 - Master Control Functions (Reset, etc)

Motor Protection

- Essential Part of Motor Control
- Protect against:
 - Under Voltage
 - Under Frequency (AC Machines Only)
 - Over Current
 - Over Heating
 - Over Speed
 - Over Load

Motor Protection Schemes

Incorporated Directly in Ladder Logic Control Schemes