
DATABASE

MANAGEMENT

Database is a collection of data and

Management System is a set of programs to store and retrieve
those data.

DBMS is a collection of inter-related data and set of programs
to store & access those data in an easy and effectivemanner.

Purpose of DBMS

Database systems are basically developed for large amount of
data. When dealing with huge amount of data, there are two
things that require optimization:

Storage of data and retrieval of data.

Storage: The data is stored in such a way that it use less
space as the duplicate data has been removed before storage.

Fast Retrieval of data: Along with storing the data in an
optimized and systematic manner, it is also important that we
retrieve the data quickly when needed. Database systems
ensure that the data is retrieved as quickly as possible.

Data

Data means known facts, which can be recorded and implicit
meaning. data is also a collection of facts and figures.

Information
Information means processed or organized data.which can be

drived from data and facts.

Data-Item (field)

It is a character or group of characters that has a specific meaning.

e.g Rollno ,Name .

Record

It is a collection of logically related fields.Record consists of values
for each field.

File

It is a collection related records.which arranged in a specific
sequence.

Metadata

Set of data that describes and givesinformation
about another data.

In other words, data about data iscalled
metadata.

System Catalog

The system catalog is a collection of tables and
views that contain important information about a
database. A system catalog is available for each
database.

Data warehouse

A data warehouse is a decision supportdatabase
that is maintained separately from the
organization's operational database.

Data dictionary

Data dictionary is a file that contains metadata that is

usually a part of the system catalog.

It have following for components:

Entities

Attributes

Relationships

Key

Stores any kind of data
A database management system should be able to store any kind of data. Any
kind of data that exists in the real world can be stored in DBMS because we
need to work with all kinds of data that is present around us.

Support ACID Properties
Atomicity
Atomicity means that all transactions must follow “all or nothing” rule. Each
transaction is said to be atomic. If one part of the transaction fails, the entire
transaction fails.e.g consider an ATM transaction where you are moving money
from one account to another. There are two parts in this transaction, first you
remove money from one account, then you add money to another account. If
one of these two parts fail, The entire transaction is considered invalid, and the
transaction must be rolled back to the state before the transaction started.

Consistency
This means that, the database will always be in a consistent state. Only valid
data will be written to the database. E.g if a column is constrained to be NOT
NULL and an application attempts to add a row with a NULL value in that
column, the entire transaction must fail, and no part of the row may be added
to the database.

Characteristics of Database Management System

Isolation
Isolation keep transaction separated from each other until they are finished.

Durability

This ensures that the transaction committed to the database will not be lost.
Durability is ensured through the use of database backups and transaction logs
that facilitate the restoration of committed transactions in spite of any subsequent
software or hardware failures.

Represents complex relationship between data
Data stored in a database is connected with each other and a relationship is made
in between data. DBMS should be able to represent the complex relationship
between data to make the efficient and accurate use of data.

Backup and recovery
There are many chances of failure of whole database. At that time no one will be
able to get the database back and for sure company will be in a big loss. The only
solution is to take backup of database and whenever it is needed, it can be stored
back.

Structures and described data

A database should not contains only the data but also all the structures and
definitions of the data. This data represent itself that what actions should be
taken on it. These descriptions include the structure, types and format of data and
relationship between them.

Data integrity
This is one of the most important characteristics of database
management system. Integrity ensures the quality and reliability of
database system. It protects the unauthorized access of database
and makes it more secure. It brings only the consistence and
accurate data into the database.

Concurrent use of database
There are many chances that many users will be accessing the data
at the same time. They may require altering the database system
concurrently. At that time, DBMS supports them to concurrently use
the database without any problem.

Advantage of DBMS

1. Improved data sharing:

2. Improved data security:

3. Better data integration:

4. Minimized data inconsistency:

5. Improved data access:

6. Improved decision making:

Disadvantage of DBMS

1 Complexity.

2.Size

3. Maintaining currency

4. Frequent upgrade/replacement cycles:

Functions and responsibilities of DBAs

DBA: person in the organization who controls the design and the use
of the database refers as DBA.

1. Schema Definition:

The DBA definition the logical Schema of the database.A Schema
refers to the overall logical structure of the database.

According to this schema, database will be developed to store
required data for an organization.

2. Storage Structure and Access Method Definition:

The DBA decides how the data is to be represented in the stored
database.

3. Assisting Application Programmers:

The DBA provides assistance to application programmers to develop
application programs.

4. Physical Organization Modification:

The DBA modifies the physical organization of the database to reflect
the changing needs of the organization or to improve performance.
5. Approving Data Access:

The DBA determines which user needs access to which part of the
database.
According to this,various types of authorizations are granted to
different users.
6. Monitoring Performance:

The DBA monitors performance of the system.The DBA ensures that
better performance is maintained by making changes in physical or
logical schema if required.
7. Backup and Recovery:

Database should not be lost or damaged.
The DBA ensures this periodically backing up the database on
magnetic tapes or remote servers.
In case of failure, such as virus attack database is recovered from
this backup.

DA and DBA

DA (Data Administrator) and DBA (Database Administrator) both are
responsible for managing database for an organization.
They differ from each other in their required skills and responsibilities.

Data Administrator (DA):

"Person in the organization who controls the data of the database refers data
administrator."

DA determines what data to be stored in database based on requirement of
the organization.

DA works on such as requirements gathering, analysis, and design phases.

DA does not to be a technical person, any kind of knowledge about database
technology can be more beneficiary

DA is some senior level person in the organization. in short, DA is a business
focused person but should understand about the database technology.

Different Types of Database Users in DBMS
1. Application Programmers
Application programmers are the one who writes
application programs that uses the database. These
application programs are written in programming
languages like COBOL or PL (Programming Language 1),
Java and fourth generation language. These programs
meet the user requirement and made according to user
requirements. Retrieving information, creating new
information and changing existing information is done by
these application programs.
They interact with DBMS through DML (Data
manipulation language) calls. And all these functions are
performed by generating a request to the DBMS. If
application programmers are not there then there will be
no creativity in the whole team of Database.

2.End Users
End users are those who access the database from the
terminal end. They use the developed applications and
they don’t have any knowledge about the design and
working of database. These are the second class of users
and their main motto is just to get their task done.
3.Casual User
These users have great knowledge of query language.
Casual users access data by entering different queries from
the terminal end. They do not write programs but they can
interact with the system by writing queries.
4.Naive
Any user who does not have any knowledge about
database can be in this category. There task is to just use
the developed application and get the desired results. For
example: Clerical staff in any bank is a naïve user. They
don’t have any dbms knowledge but they still use the
database and perform their given task.

5. DBA (Database Administrator)
DBA can be a single person or it can be a group of person.
Database Administrator is responsible for everything that
is related to database. He makes the policies, strategies
and provides technical supports.
6. System Analyst
System analyst is responsible for the design, structure and
properties of database. All the requirements of the end
users are handled by system analyst. Feasibility, eco

WORKERS BEHIND THE SCENE

DBMS system designers and implementers •
Design and implement the DBMS modules and interfaces
as a software package
Tool developers • Design and implement tools
Operators and maintenance personnel •
Responsible for running and maintenance of hardware
and software environment for database system

Structure Components, and Functions of DBMS

Structure of DBMS:

DBMS (Database Management System) acts as an interface between
the user and the database. The user requests the DBMS to perform
various operations such as insert, delete, update and retrieval on the
database.

The components of DBMS perform these requested operations on the
database and provide necessary data to the users.

The various components of DBMS are described below:

Components of a DBMS

The components of DBMS can be divided into two parts:

Function and Services of DBMS

DDL Compiler:

Data Description Language compiler processes schema definitions
specified in theDDL.

It includes metadata information such as the name of the files, data
items, storage details of each file, mapping information and
constraints etc.

DML Compiler and Query optimizer:
The DML commands such as insert, update, delete, retrieve from the
application program are sent to the DML compiler for compilation into object
code for database access.
The object code is then optimized in the best way to execute a query by the
query optimizer and then send to the data manager.

Data Manager:
The Data Manager is the central software component of the DBMS also knows
as Database Control System.
The Main Functions Of Data Manager Are:
Convert operations in user's Queries coming from the application programs or
combination of DML Compiler and Query optimizer which is known as Query
Processor from user's logical view to physical file system.Controls DBMS
information access that is stored on disk.It also controls handling buffers in
main memory.It also enforces constraints to maintain consistency and integrity
of the data.It also synchronizes the simultaneous operations performed by the
concurrent users.It also controls the backup and recovery operations.
Data Dictionary:Data Dictionary, which stores metadata about the database,
particular the schema of the database.names of the tables, names of
attributes of each table, length of attributes, and number of rows in each table.

Data Files:

Which store the database itself.

Compiled DML:

The DML complier converts the high level Queries into low level file access
commands known as compiled DML.

End Users:

The second class of users then is end user, who interacts with system from
online workstation or terminals.

Query Processor Units:

Interprets DDL statements into a set of tables containing metadata.
Translates DML statements into low level instructions that the query evaluation
engine understands.

Functions of DBMS:

DBMS free the programmers from the need to worry about the
organization and location of the data i.e. it shields the users
from complex hardware level details.

DBMS can organize process and present data elements from
the database. This capability enables decision makers to search
and query database contents in order to extract answers that
are not available in regularReports.

Programming is speeded up because programmer can
concentrate on logic of the application.

It includes special user friendly query languages which are easy
to understand by non programming users of the system.

The service provided by the DBMS includes :-

Authorization services like log on to the DBMS start the
database stop the Database etc.

Transaction supports like Recovery, Rollback etc,

Import and Export of Data.

Maintaining data dictionary

User's Monitoring

2.1 Data Model

Models define how the logical structure of a database is
modeled. Data Models are fundamental entities to
introduce abstraction in a DBMS. Data models define how
data is connected to each other and how they are
processed and stored inside the system.

The very first data model could be flat data-models, where
all the data used are to be kept in the same plane.

Entity-Relationship Model

Entity-Relationship (ER) Model is based on the notion of
real-world entities and relationships among them. The ER
Model creates entity set, relationship set, general attributes
and constraints.

ER Model is best used for the conceptual design of a
database.

Relational model
The most common model, the relational model sorts data into tables, also known as
relations, each of which consists of columns and rows. Each column lists an attribute of
the entity in question, such as price, zip code, or birth date. Together, the attributes in a
relation are called a domain. A particular attribute or combination of attributes is
chosen as a primary key that can be referred to in other tables, when it’s called a foreign
key.

Hierarchical model
The hierarchical model organizes data into a tree-like structure, where each record has
a single parent or root. Sibling records are sorted in a particular order. That order is
used as the physical order for storing the database. This model is good for describing
many real-world relationships.

Network model
The network model builds on the hierarchical model by allowing many-to-many
relationships between linked records, implying multiple parent records. Based on
mathematical set theory, the model is constructed with sets of related records. Each
set consists of one owner or parent record and one or more member or child records.
A record can be a member or child in multiple sets, allowing this model to convey
complex relationships.

Database Schema
A database schema is the skeleton structure that represents the logical view of the entire
database. It defines how the data is organized and how the relations among them are
associated. It formulates all the constraints that are to be applied on the data.
A database schema defines its entities and the relationship among them. It contains a
descriptive detail of the database, which can be depicted by means of schema diagrams.
It’s the database designers who design the schema to help programmers understand the
database and make it useful.

A database schema can be divided broadly into two categories −
Physical Database Schema − This schema pertains to the actual storage of data and its
form of storage like files, indices, etc. It defines how the data will be stored in a secondary
storage.
Logical Database Schema − This schema defines all the logical constraints that need to be
applied on the data stored. It defines tables, views, and integrity constraints.

Database Instance
It is important that we distinguish these two terms individually. Database schema is
the skeleton of database. It is designed when the database doesn't exist at all. Once
the database is operational, it is very difficult to make any changes to it. A database
schema does not contain any data or information.
A database instance is a state of operational database with data at any given time. It
contains a snapshot of the database. Database instances tend to change with time. A
DBMS ensures that its every instance (state) is in a valid state, by diligently following
all the validations, constraints, and conditions that the database designers have
imposed.

Data Independence
A database system normally contains a lot of data in addition to users’ data. For example, it
stores data about data, known as metadata, to locate and retrieve data easily. It is rather
difficult to modify or update a set of metadata once it is stored in the database. But as a
DBMS expands, it needs to change over time to satisfy the requirements of the users. If the
entire data is dependent, it would become a tedious and highly complex job.

Logical Data Independence
Logical data is data about database, that is, it stores information about how data is
managed inside. For example, a table (relation) stored in the database and all its
constraints, applied on that relation.
Logical data independence is a kind of mechanism, which liberalizes itself from actual
data stored on the disk. If we do some changes on table format, it should not change the
data residing on the disk.
Physical Data Independence
All the schemas are logical, and the actual data is stored in bit format on the disk. Physical
data independence is the power to change the physical data without impacting the
schema or logical data.

DBMS Architecture The design of a DBMS depends on its
architecture. It can be centralized or decentralized or
hierarchical. The architecture of a DBMS can be seen as
either single tier or multi-tier. An n-tier architecture
divides the whole system into related but
independent n modules, which can be independently
modified, altered, changed, or replaced.

In 1-tier architecture, the DBMS is the only entity where
the user directly sits on the DBMS and uses it. Any
changes done here will directly be done on the DBMS
itself. It does not provide handy tools for end-users.
Database designers and programmers normally prefer to
use single-tier architecture.

If the architecture of DBMS is 2-tier, then it must have an application
through which the DBMS can be accessed. Programmers use 2-tier
architecture where they access the DBMS by means of an
application. Here the application tier is entirely independent of the
database in terms of operation, design, and programming.
3-tier Architecture
A 3-tier architecture separates its tiers from each other based on the
complexity of the users and how they use the data present in the
database. It is the most widely used architecture to design a DBMS.

Database (Data) Tier − At this tier, the database resides along with its

query processing languages. We also have the relations that define
the data and their constraints at this level.
Application (Middle) Tier − At this tier reside the application server

and the programs that access the database. For a user, this
application tier presents an abstracted view of the database. End-
users are unaware of any existence of the database beyond the
application.

At the other end, the database tier is not aware of any other user
beyond the application tier. Hence, the application layer sits in the
middle and acts as a mediator between the end-user and the
database.
User (Presentation) Tier − End-users operate on this tier and they
know nothing about any existence of the database beyond this layer.
At this layer, multiple views of the database can be provided by the
application. All views are generated by applications that reside in the
application tier.

DBMS Interface ::A database management system (DBMS) interface is a user
interface which allows for the ability to input queries to a database without using the
query language itself. A DBMS interface could be a web client, a local client that runs
on a desktop computer, or even a mobile app.

Entity
An entity can be a real-world object, either animate or inanimate, that can be easily
identifiable. For example, in a school database, students, teachers, classes, and
courses offered can be considered as entities. All these entities have some attributes
or properties that give them their identity.
An entity set is a collection of similar types of entities. An entity set may contain
entities with attribute sharing similar values. For example, a Students set may contain
all the students of a school; likewise a Teachers set may contain all the teachers of a
school from all faculties. Entity sets need not be disjoint.
Attributes
Entities are represented by means of their properties, called attributes. All attributes
have values. For example, a student entity may have name, class, and age as
attributes.
There exists a domain or range of values that can be assigned to attributes. For
example, a student's name cannot be a numeric value. It has to be alphabetic. A
student's age cannot be negative, etc.

Types of Attributes
Simple attribute − Simple attributes are atomic values, which cannot be divided
further. For example, a student's phone number is an atomic value of 10 digits.
Composite attribute − Composite attributes are made of more than one simple
attribute. For example, a student's complete name may have first_name and
last_name.
Derived attribute − Derived attributes are the attributes that do not exist in the
physical database, but their values are derived from other attributes present in the
database. For example, average_salary in a department should not be saved
directly in the database, instead it can be derived. For another example, age can be
derived from data_of_birth.
Single-value attribute − Single-value attributes contain single value. For example −
Social_Security_Number.
Multi-value attribute − Multi-value attributes may contain more than one values.
For example, a person can have more than one phone number, email_address, etc.

Entity-Set and Keys
Key is an attribute or collection of attributes that uniquely identifies an entity among
entity set.
For example, the roll_number of a student makes him/her identifiable among
students.
Super Key − A set of attributes (one or more) that collectively identifies an entity in
an entity set.
Candidate Key − A minimal super key is called a candidate key. An entity set may
have more than one candidate key.
Primary Key − A primary key is one of the candidate keys chosen by the database
designer to uniquely identify the entity set.

Relationship
The association among entities is called a relationship. For example, an employee works_at a
department, a student enrolls in a course. Here, Works_at and Enrolls are called relationships.
Relationship Set
A set of relationships of similar type is called a relationship set. Like entities, a relationship too
can have attributes. These attributes are called descriptive attributes.
Degree of Relationship
The number of participating entities in a relationship defines the degree of the relationship.
Binary = degree 2
Ternary = degree 3
n-ary = degree

Relational Model
The most popular data model in DBMS is the Relational Model. It is
more scientific a model than others. This model is based on first-
order predicate logic and defines a table as an n-ary relation.
The main highlights of this model are − Data is
stored in tables called relations. Relations can
be normalized.
In normalized relations, values saved are atomic values. Each
row in a relation contains a unique value.
Each column in a relation contains values from a same domain.

Relational data model is the primary data model, which is used widely around the
world for data storage and processing. This model is simple and it has all the
properties and capabilities required to process data with storage efficiency.
Concepts
Tables − In relational data model, relations are saved in the format of Tables. This
format stores the relation among entities. A table has rows and columns, where rows
represents records and columns represent the attributes.
Tuple − A single row of a table, which contains a single record for that relation is called
a tuple.
Relation instance − A finite set of tuples in the relational database system represents
relation instance. Relation instances do not have duplicate tuples.
Relation schema − A relation schema describes the relation name (table name),
attributes, and their names.
Relation key − Each row has one or more attributes, known as relation key, which can
identify the row in the relation (table) uniquely.
Attribute domain − Every attribute has some pre-defined value scope, known as
attribute domain.

Constraints
Every relation has some conditions that must hold for it to be a valid relation. These conditions
are called Relational Integrity Constraints. There are three main integrity constraints −
Key constraints
Domain constraints
Referential integrity constraints
Key Constraints
There must be at least one minimal subset of attributes in the relation, which can identify a
tuple uniquely. This minimal subset of attributes is called keyfor that relation. If there are more
than one such minimal subsets, these are called candidate keys.
Key constraints force that −
in a relation with a key attribute, no two tuples can have identical values for key attributes.
a key attribute can not have NULL values.
Key constraints are also referred to as Entity Constraints.
Domain Constraints
Attributes have specific values in real-world scenario. For example, age can only be a positive
integer. The same constraints have been tried to employ on the attributes of a relation. Every
attribute is bound to have a specific range of values. For example, age cannot be less than zero
and telephone numbers cannot contain a digit outside 0-9.
Referential integrity Constraints
Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a key
attribute of a relation that can be referred in other relation.
Referential integrity constraint states that if a relation refers to a key attribute of a different or
same relation, then that key element must exist.

Indexing ::
We know that data is stored in the form of records. Every record has a key field, which

helps it to be recognized uniquely. Indexing is a data structure technique to efficiently
retrieve records from the database files based on some attributes on which the
indexing has been done.

Definition of Grant
The database administrator defines the GRANT command in SQL for giving the access or
privileges to the users of the database. Three major components which are involved in the
authorization are the users, privilege/s (operations) and a database object. The user is the one
who triggers the execution of the application program. Operations are the component which is
embedded in an application program. The operations are performed on database objects such
as relation or view name.
SYNTAX of GRANT Command:
grant <privilege record>
on <relation title or view title>
to <user/role record>;

Here the privilege list could involve select, insert, update and delete operations or combination
of them. These three aspects of the command are checked by authorization control before
proceeding.
When an owner account A1 of the relation (table) R grants privilege to another account A2 on R
then the account A2 can access the relation R and is authorised to give the privileges to another
account on R. If the A1 revokes the privileges from A2 on R1 then, all the privileges that A2
propagated will be revoked automatically by the system. So, this is how the privileges on tables
can propagate. Thus, a DBMS permitting propagation should follow the privileges that are
granted so that the privileges can be revoked easily.
Let’s take an example to illustrate the Granting of privileges. We have two schemas for the
tables Faculty and Department and accounts A1 and A2.
GRANT SELECT, INSERT, UPDATE ON FACULTY, DEPARTMENT TO A1, A2;
In the above given example, the account A1 and A2 are allowed to perform the select, insert and
update operations on the employee and department table.
Definition of Revoke
The REVOKE command in SQL is defined to take away the granted privileges (authorizations)
from the user of the database. The one who has the authority to withdraw the privileges is the
database administrator.
SYNTAX of REVOKE Command:
revoke <privilege list>
on <relation name or view name>
from <user/role list>;

DDL COMMANDS
1.Create Statement ::

(i)Create table <tablename>

(Fieldname datatype(size) Key constraint));

(ii) Create table <tablename>as select * from <oldtablename>

2.Alter Statement::

(i)Alter table <tablename>

Add(Fieldname datatype(size) Key constraint));

(ii)Alter table<tablename>

Modify(Fieldname datatype(size));

3.Describe Statement::

Desc <tablename>

4.Drop Statement:: Drop

table <tablename>

DML Command::

1.insert Statement::
Insert into <tablename>
Values(&fieldname1,……..);

2.Update Statement::
Update tablename
Set fieldname=expression;
3.Delete statement
Delete from tablename;
4.Select statement::
Select * fromtablename;

