GOVERNMENT POLYTECHNIC DHANGAR

Subject:- Surveying-11

Introduction

- Generally used on Highway and Railway.
- Use for change the direction.
- Always tangential to the straight direction.
- The two line connected by a curve are called tangents.

Types of Curves

Types of Circular Curve

- There are three type of the circular curve.

Simple Curve

Compounded Curve

Reserve Curve

Simple Curve

- Consist of a single Arc.
- Tangential to both the straight line.

2.

Compound Curve

- Two or more simple arc.
- In fig arc radius R_{1} and centre O_{1}
- In fig arc radius R_{2} and centre O_{2}

3.

Reverse Curve

- Two circular arcs.
- Centre in opposite direction.
- Reverse curve are provided for low speeds roads and railway.

Definition and Notations for simple

- Back tangent point:-
- The tangent $\left(\mathrm{AT}_{1}\right)$ previous to the curve is called tha back tangent or first tangent point.

tangent point.
- Point of Intersection (P.I) :-
- If the tangents AT_{1} and AT_{2} are produced they will meet in a point, called the point of intersection (P.I).
- It is also called vertex (V)
- Point of Curve (P.C) :-
- It is the beginning point T_{1} of a curve, at this point alignment is changes from a tangent to a curve.
- Point of tangency . (P.T) :-
- The end point of the curve $\left(\mathrm{T}_{2}\right)$ is called the point of tangency.
- Intersection angle (Ф) :-
- The angle AVB between tangent AV and tangent

VB is called intersection angle.

- Deflection angle (Δ) :-
- The angle at P.I between tangent AV produce and VB is called the deflection angle.
- Tangent distance
:-
- It is the distance between the P.C to

P.I, it is also
distance between
the P.I to P.T
- External distance (E) :-
- It is the distance from the mid point of the curve to P.I.
- Length of Curve (I) :-
- It is the total length of curve from P.C to P.T.

- Long Chord :-
- It is chord joining P.C to P.T T1, T2 is a long chord.
- Normal chord :-
- A chord between two successive regular station

on a curve is called normal chord.

- Sub Chord :-

- The chord shorter than normal (Shorter than 20 m) is called Sub chord.
- Versed sine :-
- The distance between mid point of long chord (D) and the apex point C is called versed sine.

- Right hand curve
:-
- If the curve deflect to the right of the direction of the progress of survey, it is called right hand curve.
- Left hand curve :-
- If the curve deflect to the left of the direction of the progress of survey,
 it is called left hand curve.

Designation of Curve

- The sharpness of Curve is designated by two ways :-

1) By radius (R)
2) By degree of curvature (D)
3) By radius (\mathbf{R}) :-

- In this method the curve is known by the length of its radius (R).
- Ex :-
- 200 m curve means the curve having radius 200 m .
- 6 chain curve means the curve having radius 6 chain.

2) By Degree of Curvature :-

- In this method curve is designated by degree.
- The degree of curvature can be divided in to two ways.

1. Chord definition :-

- The angle subtended at the centre of curve by a chord of 20 m is called degree of curvature.
- Ex :- If the angle subtended at the centre of the curve by a chord of 20 m is 5^{0} the curve is called 5^{0} degree curve.

2. Arc definition :-

- The angle subtended at the centre of the curve by an arc of 20 m length is called degree of curve.
- Used in America, Canada, India.

Relation Between Radius and Degree of Curve

By Chord Definition

By Arc Definition

By Chord Definition

- The angle subtended at the centre of curve by a chord of 20 m is called degree of curve.
- $\mathrm{R}=$ Radius of curve
- $\mathrm{D}=$ Degree of Curve
- $\mathrm{PQ}=20 \mathrm{~m}=$ Length of Chord

- From triangle PCO
- $\operatorname{Sin} \frac{D}{2}=\frac{10}{R}$
- $\mathrm{R}=\frac{10}{\operatorname{Sin} \frac{D}{2}}$
- When D is small, $\operatorname{Sin} \frac{D}{2}$ may be taken
equall to $\frac{D}{2}$
- $\operatorname{Sin} \frac{D}{2}=\frac{D}{2}$
- $\mathrm{R}=\frac{10}{\frac{D}{2} \mathrm{X} \frac{\pi}{180}}$
- $\mathrm{R}=\frac{10 \times 360}{\pi D}=\frac{1146}{D}$

By Arc Definition

- The angle subtended at the centre of curve by an arc of 20 m length is called degree of curve.
- $\frac{2 \pi R}{360}=\frac{20}{D}$
- $\mathrm{R}=\frac{20 \times 360}{2 \pi D}$
- $\mathrm{R}=\frac{1145.92}{D}$

Elements of Simple Circular Curve

Length of Curve (l)

* If curve designated by radius
- $\mathrm{l}=$ length of $\operatorname{arc} \mathrm{T}_{1} \mathrm{CT}_{2}$
- $\mathrm{l}=\mathrm{R} \Delta$
- $\mathrm{l}=\frac{R \Delta \pi}{180}$
(Where Δ is in Degree)
* If curve designated by degree
- Length of arc $=20 \mathrm{~m}$
- Length of curve $=\mathrm{l}=\frac{20 \Delta}{D} \mathrm{~m}$
($\mathrm{D}=$ degree of curve for 20 m arc)

Tangent Length (T)

- VT_{1} and VT_{2} are the tangent lengths
- $\mathrm{T}=\mathrm{VT}_{1}=\mathrm{VT}_{2}=$ tangent length
- From $\Delta \mathrm{V}_{1} \mathrm{O}$
- $\tan \frac{\Delta}{2}=\frac{V T_{1}}{O T_{1}}=\frac{T}{R}$
($\angle \mathrm{VT}_{1} \mathrm{O}$ and $\angle \mathrm{VT}_{2} \mathrm{O}$ are right angle)

- $\mathrm{T}=\mathrm{R} \tan \underline{\Delta}$

From triangle $V I_{1} \mathrm{O}$

- $\operatorname{Cos} \frac{\Delta}{2}=\frac{O T_{1}}{O V}=\frac{R}{O V}$
- $\mathrm{OV}=\frac{R}{\operatorname{Cos} \frac{\Delta}{2}}=\mathrm{RSec} \frac{\Delta}{2}$
- $\mathrm{E}=\mathrm{OV}-\mathrm{OC}$
$=R \operatorname{Sec} \frac{\Delta}{2}-\mathrm{R}$
$=R\left(\operatorname{Sec} \frac{\Delta}{2}-1\right)$

Mid Ordinate (M)

- In the fig, CD is the mid ordinate.
- It is also called versed siņe.
- Mid ordinate $=\mathrm{M}$
- $\mathrm{M}=\mathrm{CD}=\mathrm{OC}-\mathrm{OD}$
- From $\Delta \mathrm{T}_{1} \mathrm{DO}$
- $\operatorname{Cos} \frac{\Delta}{2}=\frac{O D}{O T_{1}}=\frac{O D}{R}$
- $\mathrm{OD}=\mathrm{R} \operatorname{Cos} \frac{\Delta}{2}$
- $\mathrm{M}=\mathrm{OC}-\mathrm{OD}$

$$
\begin{aligned}
& =\mathrm{R}-\mathrm{R} \operatorname{Cos} \frac{\Delta}{2} \\
& =\mathrm{R}\left(1-\operatorname{Cos} \frac{\Delta}{2}\right)
\end{aligned}
$$

Setting Out of Simple Circular Curve

- First of all, tangent point should be located on the ground very accurately.

* Location of Tangent Point :-

\checkmark First of all surveyor study the working plan.
\checkmark Knowing offsets to certain points on both tangents and marked on ground.
\checkmark Both the tangent AV and BV, intersect at a point V, known as point of intersection.
\checkmark Set the theodolite at V and measure the angle AVB $=\varnothing$
\checkmark Deflection angle $=\Delta=180$ - \varnothing

- Calculate the tangent length $=\mathrm{T}=\mathrm{R} \tan \frac{\Delta}{2}$
- Now select point T_{1} on line AV at a distance T from V .
- Similarly select point T_{2} on line BV at a distance T from V .
* Chainage of tangent Point :-
\checkmark The distance of any point from the beginning of the chain line is called chainage of that point.
\checkmark Point A is the starting point of the chain line. Chainage of point V , B, D are measure from the point A.
\checkmark Chainage of $\mathrm{T} 1=$ chainage of $\mathrm{V}-\mathrm{T}$ (tangent Length)
\checkmark Chainage T2 $=$ chainage of $\mathrm{T} 1+$ length of curve (l)
$\checkmark \mathrm{l}=\frac{R \Delta \pi}{180}$
* Normal Chord and Sub Chord :-
\checkmark On the alignment of the curve, at a certain distance interval pegs are driven in to the ground.
\checkmark The distance between the two pegs is normally kept equal to 20 m .
\checkmark The distance is known as peg interval.
\checkmark If the peg are driven at 20 m interval, the peg station are called main peg stations.
\checkmark The chord joining the tangent point T_{1} and the first main peg station is called first sub chord.
\checkmark All the chord joining adjacent peg station are called full chord or normal chord.
\checkmark The length of normal chord is generally taken equal to 20m.
\checkmark The chord joining last main peg station and the tangent point T_{2} is called last sub chord.

Method of setting out of Simple circular curve

Angular Method

Linear method

Linear Method

- Only chain or tap are required.
- Angle measurement instrument are not used.
- Method are used where high degree of accuracy is not required.
- Method is used where curve is very short.

Linear methods are

i. By offset or ordinate from the long chord.
ii. By successive bisection of arcs or chords.
iii. By offsets from the tangents
iv. By offsets from chords produce

By offset or ordinate firom the long

chord.

- $\mathrm{R}=$ Radius of curve
- $\mathrm{O}_{\mathrm{o}}=$ Mid-Ordinate
- $\mathrm{O}_{\mathrm{x}}=$ Ordinate at distance x from the mid point of the chord.
- T_{1} and $\mathrm{T}_{2}=$ Tangent Points
- L = Length of Long chord

- To obtain equation for O_{o} :-
- From triangle $\mathrm{OT}_{1} \mathrm{D}$,
- $\left(\mathrm{OT}_{1}\right)^{2}=\left(\mathrm{DT}_{1}\right)^{2}+(\mathrm{OD})^{2}$
- $\mathrm{R}^{2}=\left(\frac{L}{2}\right)^{2}+(\mathrm{OD})^{2}$
- $\mathrm{OD}=\sqrt{\mathrm{R}^{2}-\left(\frac{L}{2}\right)^{2}}$
- $\mathrm{O}_{\mathrm{o}}=\mathrm{R}-\mathrm{OD}$
- $\mathrm{O}_{\mathrm{o}}=\mathrm{R}-\sqrt{\mathrm{R}^{2}-\left(\frac{L}{2}\right)^{2}}$

- In order to calculate ordinate Ox to any point E , draw the line EE_{1}, parallel to the long chord $\mathrm{T}_{1} \mathrm{~T}_{2}$. joint EO to cut long chord in G .
- $\mathrm{Ox}=\mathrm{EF}=\mathrm{E}_{1} \mathrm{D}$
- $\quad=\mathrm{E}_{1} \mathrm{O}-\mathrm{DO}$
- $=\sqrt{(\mathrm{EO})^{2}-\left(E E_{1}\right)^{2}}-(\mathrm{R}-\mathrm{Oo})$
- $\mathrm{Ox}=\sqrt{(\mathrm{R})^{2}-(\mathrm{X})^{2}}-(\mathrm{R}-\mathrm{Oo})$

2. By successive bisection of arcs or
 chords.

- Joint point T_{1} and T_{2} and bisect long chord at D .
- Erect perpendicular DC at D equall to mid ordinate (M)
- Mid ordinate $=\mathrm{M}=\mathrm{CD}=\mathrm{R}\left(1-\operatorname{Cos} \frac{\Delta}{2}\right)$

- $\mathrm{O}_{\mathrm{o}}=\mathrm{R}-\sqrt{\mathrm{R}^{2}-\left(\frac{L}{2}\right)^{2}}$
- Joint $\mathrm{T}_{1} \mathrm{C}$ and $\mathrm{T}_{2} \mathrm{C}$ and bisect them at D_{1} and D_{2} respectively.
- At D1 and D2 set out perpendicular offsets $\mathrm{C}_{1} \mathrm{D}_{1}=\mathrm{C}_{2} \mathrm{D}_{2}=(1-$ $\operatorname{Cos} \frac{\Delta}{4}$) and obtain C_{1} and C_{2} on the curve.

