GOVERNMENT POLYTECHNIC DHANGAR Subject:- Surveying-11

Introduction

- Generally used on Highway and Railway.
- Use for change the direction.
- Always tangential to the straight direction.
- The two line connected by a curve are called tangents.

Types of Circular Curve

• There are three type of the circular curve.

Simple Curve

• Consist of a single Arc.

1.

• Tangential to both the straight line.

Compound Curve

• Two or more simple arc.

2.

- In fig arc radius R₁ and centre O₁
- In fig arc radius R₂ and centre O₂

<u>3.</u>

- Two circular arcs.
- Centre in opposite direction.
- Reverse curve are provided for low speeds roads and railway.

Definition and Notations for simple

curve

- <u>Back tangent</u>
 <u>point :-</u>
- The tangent (AT₁) previous to the curve is called tha back tangent or first tangent point.
- <u>Forward tangent</u> <u>Point :-</u>
- The tangent (T₂B) following the curve is called the forward tangent point or second

tangent point.

- <u>Point of Intersection</u> (P.I) :-
- If the tangents AT₁ and AT₂ are produced they will meet in a point, called the point of intersection (P.I).
- It is also called vertex (V)
- **Point of Curve (P.C) :-**
- It is the beginning point T₁ of a curve, at this point alignment is changes from a tangent to a curve.

- <u>Point of tangency</u> (P.T) :-
- The end point of the curve (T₂) is called the point of tangency.
- Intersection angle $(\Phi):$ -
- The angle AVB between tangent AV and tangent VB is called intersection angle.

- Deflection angle (Δ) :-
- The angle at P.I between tangent AV produce and VB is called the deflection angle.
- <u>Tangent distance</u> :-
- It is the distance between the P.C to P.I, it is also distance between

the P.I to P.T

- External distance (E) :-
- It is the distance from the mid point of the curve to P.I.
- <u>Length of Curve</u> (<u>l) :-</u>
- It is the total length of curve from P.C to P.T.

- Long Chord :-
- It is chord joining P.C to P.T T1, T2 is a long chord.
- <u>Normal chord</u> <u>:-</u>
- A chord between two successive regular station on a curve is called normal chord.

- Sub Chord :-
- The chord shorter than normal (Shorter than 20m) is called Sub chord.
- Versed sine :-
- The distance between mid point of long chord (D) and the apex point C is called versed sine.

- <u>Right hand curve</u> :-
- If the curve deflect to the right of the direction of the progress of survey, it is called right hand curve.
- Left hand curve :-
- If the curve deflect to the left of the direction of the progress of survey, it is called left hand curve.

Designation of Curve

- The sharpness of Curve is designated by two ways :-
- 1) By radius (R)
- 2) By degree of curvature (D)

1) <u>By radius (R) :-</u>

- In this method the curve is known by the length of its radius (R).
- Ex :-
- 200m curve means the curve having radius 200m.
- 6 chain curve means the curve having radius 6 chain.

2) <u>By Degree of Curvature :-</u>

- In this method curve is designated by degree.
- The degree of curvature can be divided in to two ways.

1. Chord definition :-

- The angle subtended at the centre of curve by a chord of 20m is called degree of curvature.
- Ex :- If the angle subtended at the centre of the curve by a chord of 20m is 5^o the curve is called 5^o degree curve.

2. Arc definition :-

- The angle subtended at the centre of the curve by an arc of 20m length is called degree of curve.
- Used in America, Canada, India.

Relation Between Radius and Degree of <u>Curve</u>

By Chord Definition

By Arc Definition

By Chord Definition

- The angle subtended at the centre of curve by a chord of 20m is called degree of curve.
- R = Radius of curve
- D = Degree of Curve
- PQ = 20 m = Length of Chord

• From triangle PCO

•
$$\operatorname{Sin} \frac{D}{2} = \frac{10}{R}$$

• $\operatorname{R} = \frac{10}{\operatorname{Sin} \frac{D}{2}}$
• When D is small, $\operatorname{Sin} \frac{D}{2}$ may be taken equall to $\frac{D}{2}$

• Sin
$$\frac{D}{2} = \frac{D}{2}$$

• R =
$$\frac{10}{\frac{D}{2} \times \frac{\pi}{180}}$$

By Arc Definition

 The angle subtended at the centre of curve by an arc of 20m length is called degree of curve.

 $\bullet \ \frac{2 \pi R}{360} = \frac{20}{D}$

• R =
$$\frac{20 X 360}{2 \pi D}$$

• R =
$$\frac{1145.92}{D}$$

Elements of Simple Circular Curve

Length of Curve (l)

* If curve designated by radius

- $l = length of arc T_1 C T_2$
- $l = R \Delta$ (Where Δ is in radian)
- $\bullet] = \frac{R \Delta \pi}{180}$

(Where Δ is in Degree)

* If curve designated by degree

- Length of arc = 20 m
- Length of curve = $l = \frac{20 \Delta}{D} m$ (D = degree of curve for 20 m arc)

Tangent Length (T)

- VT₁ and VT₂ are the tangent lengths
- $T = VT_1 = VT_2 = tangent$ length
- From Δ V T₁ O
- $\tan \frac{\Delta}{2} = \frac{VT_1}{OT_1} = \frac{T}{R}$ ($\angle VT_1O$ and $\angle VT_2O$ are right angle)

• $T \equiv R \tan \frac{\Delta}{-}$

Mid Ordinate (M)

- In the fig, CD is the mid ordinate.
- It is also called versed sine.
- Mid ordinate = M
- M = CD = OC OD
- From $\Delta T_1 DO$
- $\cos \frac{\Delta}{2} = \frac{OD}{OT_1} = \frac{OD}{R}$ • $OD = R \cos \frac{\Delta}{2}$ • M = OC - OD
 - $= R R \cos \frac{\Delta}{2}$ $= R (1 \cos \frac{\Delta}{2})$

Setting Out of Simple Circular Curve

• First of all, tangent point should be located on the ground very accurately.

Location of Tangent Point :-

- \checkmark First of all surveyor study the working plan.
- ✓ Knowing offsets to certain points on both tangents and marked on ground.
- ✓ Both the tangent AV and BV, intersect at a point V, known as point of intersection.
- \checkmark Set the theodolite at V and measure the angle AVB = Ø
- ✓ Deflection angle = Δ = 180 Ø

- Calculate the tangent length = T = R tan $\frac{\Delta}{2}$
- Now select point T_1 on line AV at a distance T from V.
- Similarly select point T_2 on line BV at a distance T from V.

Chainage of tangent Point :-

- ✓ The distance of any point from the beginning of the chain line is called chainage of that point.
- ✓ Point A is the starting point of the chain line. Chainage of point V,
 B, D are measure from the point A.
- ✓ Chainage of T1 = chainage of V T (tangent Length)
- ✓ Chainage T2 = chainage of T1 + length of curve (l)

 $\checkmark l = \frac{R \Delta \pi}{180}$

* Normal Chord and Sub Chord :-

- ✓ On the alignment of the curve, at a certain distance interval pegs are driven in to the ground.
- ✓ The distance between the two pegs is normally kept equal to 20 m.
- \checkmark The distance is known as peg interval.
- ✓ If the peg are driven at 20m interval, the peg station are called main peg stations.
- ✓ The chord joining the tangent point T_1 and the first main peg station is called first sub chord.
- ✓ All the chord joining adjacent peg station are called full chord or normal chord.
- ✓ The length of normal chord is generally taken equal to 20m.
- ✓ The chord joining last main peg station and the tangent point T₂ is called last sub chord.

Method of setting out of Simple circular curve

Linear Method

- Only chain or tap are required.
- Angle measurement instrument are not used.
- Method are used where high degree of accuracy is not required.
- Method is used where curve is very short.

Linear methods are

- i. By offset or ordinate from the long chord.
- ii. By successive bisection of arcs or chords.
- iii. By offsets from the tangents
- iv. By offsets from chords produce

By offset or ordinate from the long chord.

- R = Radius of curve
- $O_0 = Mid-Ordinate$
- $O_x = Ordinate$ at distance x from the mid point of the chord.
- T_1 and T_2 = Tangent Points
- L = Length of Long chord

- To obtain equation for O_o :-
- From triangle OT₁D,
- $(OT_1)^2 = (DT_1)^2 + (OD)^2$

In order to calculate ordinate Ox to any point E, draw the line EE₁, parallel to the long chord T₁ T₂. joint EO to cut long chord in G.

<u>2. By successive bisection of arcs or</u>

chords.

- Joint point T_1 and T_2 and bisect long chord at D.
- Erect perpendicular DC at D equall to mid ordinate (M)
- Mid ordinate = M = CD = R(1 Cos $\frac{\Delta}{2}$)

•
$$O_o = R - \sqrt{R^2 - \left(\frac{L}{2}\right)^2}$$

- Joint T_1C and T_2C and bisect them at D_1 and D_2 respectively.
- At D1 and D2 set out perpendicular offsets $C_1D_1 = C_2D_2 = (1 C_2 \frac{\Delta}{4})$ and obtain C_1 and C_2 on the curve.

